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An introduction to hierarchical linear modeling

Heather Woltman, Andrea Feldstain, J. Christine MacKay, Meredith Rocchi
University of Ottawa

This tutorial aims to introduce Hierarchical Linear Modeling (HLM). A simple
explanation of HLM is provided that describes when to use this statistical technique
and identifies key factors to consider before conducting this analysis. The first section
of the tutorial defines HLM, clarifies its purpose, and states its advantages. The second
section explains the mathematical theory, equations, and conditions underlying HLM.
HLM hypothesis testing is performed in the third section. Finally, the fourth section
provides a practical example of running HLM, with which readers can follow along.
Throughout this tutorial, emphasis is placed on providing a straightforward overview

of the basic principles of HLM.

"Hierarchical levels of grouped data are a commonly
occurring phenomenon (Osborne, 2000). For example, in the
education sector, data are often organized at student,
classroom, school, and school district levels. Perhaps less
intuitively, in meta-analytic research, participant, procedure,
and results data are nested within each experiment in the
analysis. In repeated measures research, data collected at

* Please note that Heather Woltman, Andrea Feldstain, and J.
Christine MacKay all contributed substantially to this
manuscript and should all be considered first authors.
Heather Woltman, Andrea Feldstain, Meredith Rocchi,
School of Psychology, University of Ottawa. J. Christine
MacKay, University of Ottawa Institute of Mental Health
Research, and School of Psychology, University of Ottawa.
Correspondence concerning this paper should be addressed
to Heather Woltman, School of Psychology, University of
Ottawa, 136 Jean-Jacques Lussier, Room 3002, Ottawa,
Ontario, Canada KIN 6N5. Tel: (613) 562-5800 ext. 3946.
Email: hwolt031@uottawa.ca.

The authors would like to thank Dr. Sylvain Chartier and
Dr. Nicolas Watier for their input in the preparation of this
manuscript. As well, the authors would like to thank Dr.
Veronika Huta for sharing her expertise in the area of
hierarchical linear modeling, as well as for her continued
guidance and support throughout the preparation of this
manuscript.

52

different times and under different conditions are nested
within each study participant (Raudenbush & Bryk, 2002;
Osborne, 2000). Analysis of hierarchical data is best
performed using statistical techniques that account for the
hierarchy, such as Hierarchical Linear Modeling.

Hierarchical Linear Modeling (HLM) is a complex form
of ordinary least squares (OLS) regression that is used to
analyze variance in the outcome variables when the
predictor variables are at varying hierarchical levels; for
example, students in a classroom share variance according
to their common teacher and common classroom. Prior to
the development of HLM, hierarchical data was commonly
assessed using fixed parameter simple linear regression
techniques; however, these techniques were insufficient for
such analyses due to their neglect of the shared variance. An
algorithm to facilitate covariance component estimation for
unbalanced data was introduced in the early 1980s. This
development allowed for widespread application of HLM to
multilevel data analysis (for development of the algorithm
see Dempster, Laird, & Rubin, 1977; for its application to
HLM see Dempster, Rubin, & Tsutakawa, 1981). Following
this advancement in statistical theory, HLM’s popularity
flourished (Raudenbush & Bryk, 2002; Lindley & Smith,
1972; Smith, 1973).

HLM accounts for the shared variance in hierarchically
structured data: The technique accurately estimates lower-
level slopes (e.g., student level) and their implementation in
estimating higher-level outcomes (e.g., classroom level;



Table 1. Factors at each hierarchical level that affect students’
Grade Point Average (GPA)

Hierarchical Example of = Example Variables
Level Hierarchical
Level
Level-3 School School’s geographic
Level location
Annual budget
Level-2 Classroom Class size
Level Homework assignment
load
Teaching experience
Teaching style
Level-1 Student Gender
Level Intelligence Quotient (IQ)

Socioeconomic status
Self-esteem rating
Behavioural conduct rating
Breakfast consumption
GPA?

2 The outcome variable is always a level-1 variable.

Hofmann, 1997). HLM is prevalent across many domains,
and is frequently used in the education, health, social work,
and business sectors. Because development of this statistical
method occurred simultaneously across many fields, it has
come to be known by several names, including multilevel-,
mixed level-, mixed linear-, mixed effects-, random effects-,
random coefficient (regression)-, and (complex) covariance
components-modeling (Raudenbush & Bryk, 2002). These
labels all describe the same advanced regression technique
that is HLM. HLM simultaneously investigates relationships
within and between hierarchical levels of grouped data,
thereby making it more efficient at accounting for variance
among variables at different levels than other existing
analyses.

Example

Throughout this tutorial we will make use of an example
to illustrate our explanation of HLM. Imagine a researcher
asks the following question: What school-, classroom-, and
student-related factors influence students’ Grade Point Average?
This research question involves a hierarchy with three
levels. At the highest level of the hierarchy (level-3) are
school-related variables, such as a school’s geographic
location and annual budget. Situated at the middle level of
the hierarchy (level-2) are classroom variables, such as a
teacher’'s homework assignment load, years of teaching
experience, and teaching style. Level-2 variables are nested
within level-3 groups and are impacted by level-3 variables.
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For example, schools (level-3) that are in remote geographic
locations (level-3 variable) will have smaller class sizes
(level-2) than classes in metropolitan areas, thereby affecting
the quality of personal attention paid to each student and
noise levels in the classroom (level-2 variables).

Variables at the lowest level of the hierarchy (level-1) are
nested within level-2 groups and share in common the
impact of level-2 variables. In our example, student-level
variables such as gender, intelligence quotient (IQ),
socioeconomic status, self-esteem rating, behavioural
conduct rating, and breakfast consumption are situated at
level-1. To summarize, in our example students (level-1) are
situated within classrooms (level-2) that are located within
schools (level-3; see Table 1). The outcome variable, grade
point average (GPA), is also measured at level-1; in HLM,
the outcome variable of interest is always situated at the
lowest level of the hierarchy (Castro, 2002).

For simplicity, our example supposes that the researcher
wants to narrow the research question to two predictor
variables: Do student breakfast consumption and teaching style
influence student GPA? Although GPA is a single and
continuous outcome variable, HLM can accommodate
multiple continuous or discrete outcome variables in the

same analysis (Raudenbush & Bryk, 2002).

Methods for Dealing with Nested Data

An effective way of explaining HLM is to compare and
contrast it to the methods used to analyze nested data prior
to HLM’s development. These methods, disaggregation and
aggregation, were referred to in our introduction as simple
linear regression techniques that did not properly account
for the shared variance that is inherent when dealing with
hierarchical information. While historically the use of
aggregation
hierarchical data possible, these approaches resulted in the

disaggregation and made analysis of
incorrect partitioning of variance to variables, dependencies
in the data, and an increased risk of making a Type I error
(Beaubien, Hamman, Holt, & Boehm-Davis, 2001; Gill, 2003;

Osborne, 2000).
Disaggregation

Disaggregation of data deals with hierarchical data
issues by ignoring the presence of group differences. It
considers all relationships between variables to be context
free and situated at level-1 of the hierarchy (i.e., at the
individual level). Disaggregation thereby ignores the
presence of possible between-group variation (Beaubien et
al., 2001; Gill, 2003; Osborne, 2000). In the example we

provided earlier of a researcher investigating whether level-
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Table 2. Sample dataset using the disaggregation method, with level-2 and level-3 variables excluded from the data
(dataset is adapted from an example by Snijders & Bosker, 1999)

Student ID Classroom ID School ID GPA Score Breakfast Consumption Score
(Level-1) (Level-2) (Level-3) (Level-1) (Level-1)
1 1 1 5 1
2 1 1 7 3
3 2 1 4 2
4 2 1 6 4
5 3 1 3 3
6 3 1 5 5
7 4 1 2 4
8 4 1 4 6
9 5 1 1 5
10 5 1 3 7
1 variable breakfast consumption affects student GPA,
disaggregation would entail studying level-2 and level-3  Aggregation

variables at level-1. All students in the same class would be
assigned the same mean classroom-related scores (e.g.,
homework assignment load, teaching experience, and
teaching style ratings), and all students in the same school
would be assigned the same mean school-related scores
(e.g., school geographic location and annual budget ratings;
see Table 2).

By bringing upper level variables down to level-1,
shared variance is no longer accounted for and the
assumption of independence of errors is violated. If teaching
style influences student breakfast consumption, for example,
the effects of the level-1 (student) and level-2 (classroom)
variables on the outcome of interest (GPA) cannot be
disentangled. In other words, the impact of being taught in
the same classroom on students is no longer accounted for
when partitioning variance using the disaggregation
approach. Dependencies in the data remain uncorrected, the
assumption of independence of observations required for
simple regression is violated, statistical tests are based only
on the level-1 sample size, and the risk of partitioning
variance incorrectly and making inaccurate statistical
estimates increases (Beaubien et al, 2001; Gill, 2003;
Osborne, 2000). As a general rule, HLM is recommended
over disaggregation for dealing with nested data because it
addresses each of these statistical limitations.

In Figure 1, depicting the relationship between breakfast
consumption and student GPA using disaggregation, the
predictor variable (breakfast consumption) is negatively
related to the outcome variable (GPA). Despite (X, Y) units
being situated variably above and below the regression line,
this method of analysis indicates that, on average, unit
increases in a student’s breakfast consumption result in a
lowering of that student’s GPA.

Aggregation of data deals with the issues of hierarchical
data analysis differently than disaggregation: Instead of
ignoring higher level group differences, aggregation ignores
lower level individual differences. Level-1 variables are
raised to higher hierarchical levels (e.g., level-2 or level-3)
and information about individual variability is lost. In
aggregated statistical models, within-group variation is
ignored and individuals are treated as homogenous entities
(Beaubien et al.,, 2001; Gill, 2003; Osborne, 2000). To the
the breakfast
consumption on student GPA, this approach changes the

researcher investigating impact  of
research question (Osborne, 2000). Mean classroom GPA

becomes the new outcome variable of interest, rather than

71 [¢]

GPA

1 [e]

T T T T T T T
1 2 3 4 5 6 7

Breakfast Consumption
Figure 1. The relationship between breakfast consumption
and student GPA using the disaggregation method. Figure
is adapted from an example by Snijders & Bosker (1999) and
Stevens (2007).
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Table 3. Sample dataset using the aggregation method, with level-1 variables excluded from the data
(dataset is adapted from an example by Snijders & Bosker, 1999)

Teacher ID Classroom GPA Classroom Breakfast Consumption
(Level-2) (Level-2) (Level-2)
1 6 2
2 5 3
3 4 4
4 3 5
5 2 6

student GPA. Also, variation in students’ breakfast habits is
no longer measurable; instead, the researcher must use
mean classroom breakfast consumption as the predictor
variable (see Table 3 and Figure 2). Up to 80-90% of
variability due to individual differences may be lost using
aggregation, resulting in dramatic misrepresentations of the
relationships between variables (Raudenbush & Bryk, 1992).
HLM is generally recommended over aggregation for
dealing with nested data because it effectively disentangles
individual and group effects on the outcome variable.

In Figure 2, depicting the relationship between
classroom breakfast consumption and classroom GPA using
aggregation, the predictor variable (breakfast consumption)
is again negatively related to the outcome variable (GPA). In
this method of analysis, all (X, Y) units are situated on the
regression line, indicating that unit increases in a
classroom’s mean breakfast consumption perfectly predict a
lowering of that classroom’s mean GPA. Although a
negative relationship between breakfast consumption and
GPA is found using both disaggregation and aggregation
techniques, breakfast consumption is found to impact GPA

more unfavourably using aggregation.

7

Classroom GPA
N
1

T T T T T T T
1 2 3 4 5 6 7

Classroom Breakfast Consumption

Figure 2. The relationship between classroom breakfast
consumption and classroom GPA using the aggregation
method. Figure is adapted from an example by Snijders &
Bosker (1999) and Stevens (2007).

HIM

Figure 3 depicts the relationship between breakfast
consumption and student GPA using HLM. Each level-1
(X,Y) unit GPA and breakfast
consumption) is identified by its level-2 cluster (i.e., that

(i.e., each student’s
student’s classroom). Each level-2 cluster’s slope (i.e., each
classroom’s slope) is also identified and analyzed separately.
Using HLM, both the within-
regressions are taken into account to depict the relationship

and between-group

between breakfast consumption and GPA. The resulting
analysis indicates that breakfast consumption is positively
related to GPA at level-1 (i.e., at the student level) but that
the intercepts for these slope effects are influenced by level-2
factors [i.e., students’ breakfast consumption and GPA (X, Y)
units are also affected by classroom level factors]. Although
disaggregation and aggregation methods indicated a
negative relationship between breakfast consumption and
GPA, HLM indicates that unit increases in breakfast

consumption actually positively impact GPA. As
demonstrated, HLM takes into consideration the impact of
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Figure 3. The relationship between breakfast consumption
and student GPA using HLM. Figure is adapted from an
example by Snijders & Bosker (1999) and Stevens (2007).



factors at their respective levels on an outcome of interest. It
is the favored technique for analyzing hierarchical data
because it shares the advantages of disaggregation and
aggregation without introducing the same disadvantages.

As highlighted in this example, HLM can be ideally
suited for the analysis of nested data because it identifies the
relationship between predictor and outcome variables, by
taking both level-1 and level-2 regression relationships into
account. Readers who are interested in exploring the
differences yielded by aggregation and disaggregation
methods of analysis compared to HLM are invited to
experiment with the datasets provided. Level-1 and level-2
datasets are provided to allow readers to follow along with
the HLM tutorial in section 4 and to practice running an
HLM. An aggregated version of these datasets is also
provided for readers who would like to compare the results
yielded from an HLM to those yielded from a regression.

In addition to HLM'’s ability to assess cross-level data
relationships and accurately disentangle the effects of
between- and within-group variance, it is also a preferred
method for nested data because it requires fewer
assumptions to be met than other statistical methods
(Raudenbush & Bryk, 2002). HLM can accommodate non-
independence of observations, a lack of sphericity, missing
data, small and/or discrepant group sample sizes, and
heterogeneity of variance across repeated measures. Effect
size estimates and standard errors remain undistorted and
the potentially meaningful variance overlooked using
disaggregation or aggregation is retained (Beaubien,
Hamman, Holt & Boehm-Davis, 2001; Gill, 2003; Osborne,
2000).

A disadvantage of HLM is that it requires large sample
sizes for adequate power. This is especially true when
detecting effects at level-1. However, higher-level effects are
more sensitive to increases in groups than to increases in
observations per group. As well, HLM can only handle
missing data at level-1 and removes groups with missing
data if they are at level-2 or above. For both of these reasons,
it is advantageous to increase the number of groups as
opposed to the number of observations per group. A study
with thirty groups with thirty observations each (n = 900)
can have the same power as one hundred and fifty groups
with five observations each (n = 750; Hoffman, 1997).

Equations Underlying Hierarchical Linear Models

We will limit our remaining discussion to two-level
hierarchical data structures concerning continuous outcome
(dependent) variables as this provides the most thorough,
yet simple, demonstration of the statistical features of HLM.
We will be using the notation employed by Raudenbush and
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Bryk (2002; see Raudenbush & Bryk, 2002 for three-level
models; see Wong & Mason, 1985 for dichotomous outcome
variables). As stated previously, hierarchical linear models
allow for the simultaneous investigation of the relationship
within a given hierarchical level, as well as the relationship
across levels. Two models are developed in order to achieve
this: one that reflects the relationship within lower level
units, and a second that models how the relationship within
lower level units varies between units (thereby correcting
for the violations of aggregating or disaggregating data;
Hofmann, 1997). This modeling technique can be applied to
any situation where there are lower-level units (e.g., the
student-level variables) nested within higher-level units
(e.g., classroom level variables).

To aid understanding, it helps to conceptualize the
lower-level units as individuals and the higher-level units as
groups. In two-level hierarchical models, separate level-1
models (e.g., students) are developed for each level-2 unit
(e.g., classrooms). These models are also called within-unit
models as they describe the effects in the context of a single
group (Gill, 2003). They take the form of simple regressions
developed for each individual i:

Yij = Boj + B Xij + iy 1)

where:
Yi; = dependent variable measured for ith level-1 unit
nested within the jth level-2 unit,
Xij = value on the level-1 predictor,
Bo; = intercept for the jth level-2 unit,
15 = regression coefficient associated with X;; for the jth
level-2 unit, and
r;; = random error associated with the ith level-1 unit
nested within the jth level-2 unit.
In the context of our example, these variables can be
redefined as follows:
Y}; = GPA measured for student i in classroom j
Xij = breakfast consumption for student i in classroom j
Bo; = GPA for student i in classroom j who does not eat
breakfast
B1; = regression coefficient associated with breakfast
consumption for the jth classroom
r;; = random error associated with student i in classroom
j
As with most statistical models, an important
assumption of HLM is that any level-1 errors (7°;;) follow a
normal distribution with a mean of 0 and a variance of o
(see Equation 2; Sullivan, Dukes & Losina, 1999). This
applies to any level-1 model using continuous outcome

variables.

E(ri;) = Ovar(ri;) = o ()



In the level-2 models, the level-1 regression coefficients
( Bo; and 31;) are used as outcome variables and are related
to each of the level-2 predictors. Level-2 models are also
referred to as between-unit models as they describe the
variability across multiple groups (Gill, 2003). We will
consider the case of a single level-2 predictor that will be
modeled using Equations 3 and 4:

Boj = Yoo + 701G, + Ug; 3)

B1i =10 + 711G + Uy, 4)
where:
Bo; = intercept for the jth level-2 unit;
15 = slope for the jth level-2 unit;
(i = value on the level-2 predictor;
~oo = overall mean intercept adjusted for G;
710 = overall mean intercept adjusted for G;
~o1 = regression coefficient associated with G relative to
level-1 intercept;
711 = regression coefficient associated with G relative to
level-1 slope;
Up; = random effects of the jth level-2 unit adjusted for G
on the intercept;
U1 = random effects of the jth level-2 unit adjusted for G
on the slope.
In the context of our example, these variables can be
redefined as follows:
Bo; = intercept for the jth classroom;
B1; = slope for the jth classroom;
G'; = teaching style in classroom j;

700 = overall mean intercept adjusted for breakfast
consumption;

Y10 = overall mean intercept adjusted for breakfast
consumption;

Yo1 = regression coefficient associated with breakfast

consumption relative to level-2 intercept;

Y11 = regression coefficient associated with breakfast

consumption relative to level-2 slope;

Up; = random effects of the jth level-2 unit adjusted for

breakfast consumption on the intercept;

Uyj = random effects of the jth level-2 unit adjusted for

breakfast consumption on the slope.

It is noteworthy that the level-2 model introduces two
new terms (Un; and Upj;) that are unique to HLM and
differentiate it from a mnormal regression equation.
Furthermore, the model developed would depend on the
pattern of variance in the level-1 intercepts and slopes
(Hofmann, 1997). For example, if there was no variation in
the slopes across the level-1 models, G; would no longer be

meaningful given that 31; is equivalent across groups and
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would thus be removed from Equation 3 (Hofmann, 1997).
Special cases of the two-level model Equations 1, 3 and 4 can
be found in Raudenbush & Bryk (1992).

The assumption in the level-2 model (when errors are
homogeneous at both levels) is that So; and f1; have a
normal multivariate distribution with variances defined by
Too and 711 and means equal to oo and 10. Furthermore,
the covariance between Sy; and 31; (defined as 701 ) is equal
to the covariance between Up; and Uj;. As in the level-1
assumptions, the mean of Up; and Uy, is assumed to be zero
and level-1 and level-2 errors are not correlated. Finally, the
covariance between Ug; and r;; and the covariance of Uy;
and r;; are both zero (Sullivan et al., 1999). The assumptions
of level-2 models can be summarized as follows
(Raudenbush & Bryk, 2002; Sullivan et al., 1999):

E(Uo;) =0E(Uy;) =0
E(Boj) = voolo(B1i) = o1
var(fo;) = var(Un;) = moovar(B1;) = var(Us;) = 11 (5)
COV(ﬁoj,ﬁ1j) = COV(UOJ, U]j) = 701
cov(Up;,1i) = cov(Uis,135) =0

In order to allow for the classification of variables and
coefficients in terms of the level of hierarchy they affect (Gill,
2003), a combined model (i.e., two-level model; see Equation
6) is created by substituting Equations 3 and 4 into Equation
1:

Yii = 700 + M0Xij + 701G (6)
+ 711G Xy + Ur; Xy + Unj + 73
The combined model incorporates the level-1 and level-2
predictors (X;; or breakfast consumption and G; or teaching
style), a cross-level term (G;.X;; or teaching style x breakfast
consumption) as well as the composite error
(U13X5 + Unj + rij). Equation 6 is often termed a mixed
model because it includes both fixed and random effects
(Gill, 2003). Please note that fixed and random effects will be
discussed in proceeding sections.
A comparison between Equation 6 and the equation for a
normal regression (see Equation 7) further highlights the

uniqueness of HLM.
YL ZSU+,BIX11++3ann +51 (7)

As stated previously, the HLM model introduces two new
terms (Up; and U;) that allow for the model to estimate
error that normal regression cannot. In Equation 6, the errors
are no longer independent across the level-1 units. The
terms Up; and U; demonstrate that there is dependency
among the level-1 units nested within each level-2 unit.
Furthermore, Up; and U1; may have different values within
level-2 units, leading to heterogeneous variances of the error
terms (Sullivan et al., 1999). This dependency of errors has
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Table 4. Hypothesis and necessary conditions: Does student breakfast consumption and

teaching style influence student GPA?

Hypotheses
1 Breakfast consumption is related to GPA.

W N

Teaching style is related to GPA, after controlling for breakfast consumption.
Teaching style moderates the breakfast consumption-GPA relationship.

Conditions

U s W N =

There is systematic within- & between-group variance in GPA.
There is significant variance at the level-1 intercept.

There is significant variance in the level-1 slope.

The variance in the level-1 intercept is predicted by teaching style.
The variance in the level-1 slope is predicted by teaching style.

important implications for parameter estimation, which will
be discussed in the next section.

Estimation of Effects

Two-level hierarchical models involve the estimation of
three types of parameters. The first type of parameter is
fixed effects, and these do not vary across groups (Hofmann,
1997). The fixed effects are represented by ~oo, 701, y11 and
710 in Equations 3 and 4. While the level-2 fixed effects
could be estimated via the Ordinary Least Squares (OLS)
approach, it is not an appropriate estimation strategy as it
requires the assumption of homoscedasticity to be met. This
assumption is violated in hierarchical models as the
accuracy of level-1 parameters are likely to vary across
groups (e.g., classrooms; Hofmann, 1997). The technique
used to estimate fixed effects is called a Generalized Least
Squared (GLS) estimate. A GLS yields a weighted level-2
regression which ensures that groups (e.g., classrooms) with
more accurate estimates of the outcome variable (i.e., the
intercepts and slopes) are allocated more weight in the level-
2 regression equation (Hofmann, 1997). Readers seeking
further information on the estimation of fixed effects are
directed to Raudenbush & Bryk (2002).

The second type of parameter is the random level-1
coefficients (Fo;jand B1;) which are permitted to vary across
groups (e.g., classrooms; Hofmann, 1997). Hierarchical
models provide two estimates for random coefficients of a
given group (e.g., classroom): (1) computing an OLS
regression for the level-1 equation representing that group
(e.g., classroom); and (2) the predicted values of 5o; and 31
in the level-2 model [see Equations 3 and 4]. Of importance
is which estimation strategy provides the most precise
values of the population slope and intercept for the given
group (e.g., classroom; Hofmann, 1997). HLM software
programs use an empirical Bayes estimation strategy, which
takes into consideration both estimation strategies by
computing an optimally weighted combination of the two
(Raudenbush & Bryk, 2002; Raudenbush, Bryk, Cheong,

Congdon & du Toit, 2006). This strategy provides the best
estimate of the level-1 coefficients for a particular group
(e.g., classroom) because it results in a smaller mean square
error term (Raudenbush, 1988). Readers interested in further
information concerning empirical Bayes estimation are
directed to Carlin and Louis (1996).

The final type of parameter estimation concerns the
variance-covariance components which include: (1) the
covariance between level-2 error terms [i.e., cov(Uy,; and Us )
or cov(fo; and ;) defined as 701]; (2) the variance in the
level-1 error term (i.e., the variance of r;; denoted by o?);
and (3) the variance in the level-2 error terms (i.e., the
variance in Up; and Uy or 3o; and [31; defined as 700 and 711,
respectively). When sample sizes are equal and the
distribution of level-1 predictors is the same across all
groups (i.e., the design is balanced), closed-form formulas
can be used to estimate variance-covariance components
(Raudenbush & Bryk, 2002). In reality, however, an
unbalanced design is more probable. In such cases, variance-
covariance estimates are made using iterative numerical
procedures (Raudenbush & Bryk, 2002). Raudenbush & Bryk
(2002) suggest the following conceptual approaches to
estimating variance-covariance in unbalanced designs: (1)
likelihood; (2)
likelihood; and (3) Bayes estimation. Readers are directed to
chapters 13 and 14 in Raudenbush & Bryk (2002) for more
detail.

full maximum restricted maximum

Hypothesis Testing

The previous sections of this paper provided an
introduction to the logic, rationale and parameter estimation
approaches behind hierarchical linear models. The following
section will illustrate how hierarchical linear models can be
used to answer questions relevant to research in any sub-
field of psychology. It is prudent to note that for the sake of
explanation, equations in the following section (which we
will refer to as sub-models) purposely ignore one or a few
facets of the combined model (see Equation 6) and are not



ad hoc equations. Through this section we will sequentially
show how these sub-models can be used in order to run
specific tests that answer hierarchical research questions.
Thus the reader is reminded that all analyses presented in
this section could be run all at once using the combined
model (see Equation 6; Hofmann, 1997; Hofmann, personal
communication, April 25, 2010) and an HLM software
program. The following example was adapted from the
model in Hofmann (1997). For more complex hypothesis
testing strategies, please refer to Raudenbush and Bryk
(2002).

Suppose that we want to know how GPA can be
predicted by breakfast consumption, a student-level
predictor, and teaching style, a classroom-level predictor.
Recall that the combined model used in HLM is the

following:

Yii =00 + v10Xi; + 701G

g . 8
+ 911G X + U Xij + Uoj + 145 ®)

Substituting in our variables the combined model would

look like this:
GPAi; = voo + y10(Break fasti;) + vyo1(Teaching;)

+ v11(Teaching;)(Break fast,;)

+ Uy j(Breakfast;;)

+ Uoj + 7ij
Our three hypotheses are a) breakfast consumption is
related to GPA; b) teaching style is related to GPA, after
controlling for breakfast consumption; and c) teaching style

©)

moderates the breakfast consumption-GPA relationship. In
order to support these hypotheses, HLM models require five
conditions to be satisfied. Our hypotheses and necessary
conditions to be satisfied are summarized in Table 4.

Condition 1: There is Systematic Within- and Between-
Group Variance in GPA

The
information and assures that there is appropriate variance to

first condition provides useful preliminary
investigate the hypotheses. To begin, HLM applies a one-
way analysis of variance (ANOVA) to partition the within-
and between-group variance in GPA, which represents
breakfast consumption and teaching style, respectively. The
relevant sub-models (see Equations 10 and 11) formed using

select facets from Equation 9 are as follows:
Level-1: GPA; = foj + rij (10)

Level-2: fo; = ~yoo + Ug; (11)
where:
Bo; = mean GPA for classroom j;

59

oo = grand mean GPA ;

Variance(r;;) = ¢ = within group variance in GPA;

Variance(Uoj) = Too = between group variance in GPA.

The level-1 equation above [see Equation 10] includes
only an intercept estimate; there are no predictor variables.
In cases such as this, the intercept estimate is determined by
regressing the variance in GPA onto a unit vector, which
yields the variable's mean (HLM software performs this
implicitly when no predictors are specified). Therefore, at
level-1, GPA is equal to the classroom's mean plus the
classroom's respective error. At level-2 [see Equation 11],
each classroom's GPA is regressed onto a unit vector,
resulting in a constant (-yoo) that is equal to the mean of the
classroom means. As a result of this regression, the variance
within groups (¢?) is forced into the level-1 residual (ri;)
while the variance between groups (ma0) is forced into the
level-2 residual (Uo;).

HLM tests for significance of the between-group
variance (7o0) but does not test the significance of the within-
group variance (o). In the abovementioned model, the total
variance in GPA becomes partitioned into its within and
between group components; therefore Variance(GPAj) =
Variance (Uo; +7i;) = 7oo +a”. This allows for the
calculation of the ratio of the between group variance to the
total variance, termed the intra-class correlation (ICC). In
other words, the ICC represents the percent of variance in
GPA that is between classrooms. Thus by running an initial
ANOVA, HLM provides: (1) the amount of variance within
groups; (2) the amount of variance between groups; and (3)
allows for the calculation of the ICC using Equation 12.

cc=

——— 12

Too + a? (12)
Once this condition is satisfied, HLM can examine the next
two conditions to determine whether there are significant

differences in intercepts and slopes across classrooms.

Conditions 2 and 3: There is Significant Variance in the
Level-1 Intercept and Slope

Once within- and between-group variance has been
partitioned, HLM applies a random coefficient regression to
test the second and third conditions. The second condition
supports hypothesis 2 because a significant result would
indicate significant variance in GPA due to teaching style
when breakfast consumption is held constant. The third
condition supports hypothesis 3 by indicating that GPAs
differ when students are grouped by the teaching style in
their classroom. This regression is also a direct test of
hypothesis 1, that breakfast consumption is related to GPA.
The following sub-models (see Equations 13- 15) are created



using select facets of Equation 9:
Level-1: GPA;; = fo;+

f1(BreakfastConsumption) ; + ri; (13)
Level-2: fo; = oo + Uo; (14)
Level-2: B1; = v1i0 + Uy; (15)

where:
~oo = mean of the intercepts across classrooms;
710 = mean of the slopes across classrooms (Hypothesis
1);

Variance(ry;) = o = Level-1 residual variance;

Variance(Up;) = 700 = variance in intercepts;

Variance(U;;) = 711 = variance in slopes.

The ~oo and 10 parameters are the level-1 coefficients of the
intercepts and the slopes, respectively, averaged across
classrooms. HLM runs a t-test on these parameters to assess
whether they differ significantly from zero, which is a direct
test of hypothesis 1 in the case of yi0. This t-test reveals
whether the pooled slope between GPA and breakfast
consumption differs from zero.

A X2 test is used to assess whether the variance in the
intercept and slopes differs significantly from zero (700 and
T11, respectively). At this stage, HLM also estimates the
residual level-1 variance and compares it to the estimate
from the test of Condition 1. Using both estimates, HLM
calculates the percent of variance in GPA that is accounted
for by breakfast consumption (see Equation 16).

(Uunuway ANOVA — Trandom l‘cg,rz:ss'unl)

2
Rievel-1 model =
= 2
GUT]F!W&}' ANOVA (16)

Of note is that in order for the fourth and fifth conditions to
be tested, the second and third conditions must first be met.

Condition 4: The Variance in the Level-1 Intercept is
Predicted by Teaching Style

The fourth condition assesses whether the significant
variance at the intercepts (found in the second condition) is
related to teaching style. It is also known as the intercepts-
as-outcomes model. HLM uses another random regression
model to assess whether teaching style is significantly
related to the intercept while holding breakfast consumption
constant. This is accomplished via the following sub-models
(see Equations 17-19) created from using select variables in
Equation 9:

Level-1: GPA:-J- = fBo;
+ B1;(BreakfastConsumption), ; + 7i;
Level-2: Boj = 700 + ~o1(TeachingStyle), + Uo;  (18)

(17)

Level-2: B1; = v1i0 + Uy; (19)
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where:

oo = Level-2 intercept;

701 = Level-2 slope (Hypothesis 2);

710 = mean (pooled) slopes;

Variance(r;;) = o = Level-1 residual variance;

Variance(Up;) = 700 = residual intercept variance;

Variance(Us;) = 711 = variance in slopes.

The intercepts-as-outcomes model is similar to the
random coefficient regression used for the second and third
conditions except that it includes teaching style as a
predictor of the intercepts at level-2. This is a direct test of
the second hypothesis, that teaching style is related to GPA
after controlling for breakfast consumption. The residual
variance (7o0) is assessed for significance using another x2
test. If this test indicates a significant value, other level-2
predictors can be added to account for this variance. To
assess how much variance in GPA is accounted for by
teaching style, the variance attributable to teaching style is
compared to the total intercept variance (see Equation 20).

2
R level-2 intercept model —

(TUO - random regression — T00 - iutercepts-as-out::omes)

(20)

T00 - random regression

Condition 5: The Variance in the Level-1 Slope is Predicted
by Teaching Style

The fifth condition assesses whether the difference in
slopes is related to teaching style. It is known as the slopes-
The (see
Equations 21-23) formed with select variables from Equation

as-outcomes model. following sub-models

9 are used to determine if condition five is satisfied.
Level-1: GPA;; = Bo;+

f1;(BreakfastConsumption), ; + 7i; 1)
Level-2: 3o; = 00 + vo01(TeachingStyle); + Uo;  (22)
Level-2: 31; = y10 + v11(TeachingStyle); + Ur;  (23)

where:

~oo = Level-2 intercept;

701 = Level-2 slope (Hypothesis 2);

710 = Level-2 intercept;

711 = Level-2 slope (Hypothesis 3);

Variance(r;;) = o> = Level-1 residual variance;

Variance(Uo;) = 7oo = residual intercept variance;

Variance(Us;) = 111 = residual slope variance.
With teaching style as a predictor of the level-1 slope, Uy
becomes a measure of the residual variance in the averaged
level-1 slopes across groups. If a x2 test on Uy is significant,
it indicates that there is systematic variance in the level-1
slopes that is as-of-yet unaccounted for, therefore other
level-2 predictors can be added to the model. The slopes-as-



outcomes model is a direct test of hypothesis 3, that teaching
breakfast
relationship. Finally, the percent of variance attributable to

style  moderates the consumption-GPA
teaching style can be computed as a moderator in the
breakfast consumption-GPA relationship by comparing its
systematic variance with the pooled variance in the slopes
(see Equation 24).

Rissrsopsmond’=

(711 - intercept-as-outcomes — T11 - siopes—as—outcnmes) (24)

T11 - intercept-as-outcomes

Model Testing — A Tutorial

To illustrate how models are developed and tested using
HLM, a sample data set was created to run the analyses.
Analysis was performed using HLM software version 6,
which is available for download online (Raudenbush, Bryk,
Cheong, Congdon, & du Toit, 2006). For the purposes of the
demonstration,

present a two-level analysis will be

conducted using the logic of HLM.
Sample Data

The sample data contains measures from 300 basketball
players, representing 30 basketball teams (10 players per
team). Three measures were taken: Player Successful Shots on
Net (Shots_On_5), Player Life Satisfaction (Life_Satisfaction),
and Coach Years of Experience (Coach_Experience). Scores for
Shots_On_5 ranged from 0 shots to 5 shots; where higher
scores symbolized more success. Life_Satisfaction scores
ranged from 5 to 25 with higher scores representing life
satisfaction ~and lower scores representing life
dissatisfaction. Finally, Coach_Experience scores ranged
from 1 to 3, with the number representing their years of
experience. The level-lpredictor (independent; individual)
variable is Shots_On_5; the level-2 predictor (independent;
group) variable is Coach_Experience, and the outcome
The

hypotheses were as follows: 1) the number of successful

(dependent) variable is Life_Satisfaction. main
shots on net predicts ratings of life satisfaction, and 2) coach
years of experience predict variance in life satisfaction.

For the purposes of the present analysis, it is assumed
that all

Specifically, there is no multicollinearity, the Shots_On_5

assumptions of HLM are adequately met.
residuals are independent and normally distributed, and
Shots_On_5 and Coach_Experience are independent of their
level-related error and their error terms are independent of
each other (for discussion on the assumptions of HLM, see
Raudenbush and Bryk, 2002).
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Preparation

It is essential to prepare the data files using a statistical
software package before importing the data structure into
the HLM software. The present example uses PASW
(Predictive Analytics SoftWare) version 18 (Statistical
Package for the Social Sciences; SPSS). A separate file is
created for each level of the data in PASW. Each file should
contain the participants’ scores on the variables for that
level, plus an identification code to link the scores between
levels. It is important to note that the identification code
variable must be in string format, must contain the same
number of digits for all levels, and must be given the exact
same variable name at all levels. The data file must also be
sorted, from lowest value to highest value, by the
identification code variable (see Figure 4).

In this example, the level-1 file contains 300 scores for the
measures of Shots_on_5 and Life_Satisfaction, where
participants were assigned identification codes (range: 01 to
30) based on their team membership. The level-2 file
contains 30 scores for the measure of Coach_Experience and
identification codes (range: 01 to 30), which were associated
with the appropriate players from the level-1 data. Once a
data file has been created in this manner for each level, it is
possible to import the data files into the HLM software.

HIM Set-Up

The following procedures were conducted according to
those outlined by Raudenbush and Bryk (2002). After
launching the HLM program, the analysis can begin by
clicking File 2> Make New MDM File 2 Stat Package Input. In
the dialogue box that appears, select the MDM (Multivariate
Data Matrix). We will select HLM?2 to continue because our
example has two levels. A new dialogue box will open, in
which we will specify the file details, as well as load the
level-1 and level-2 variables.

First, specify the variables for the analysis by linking the
file to the level-1 and level-2 SPSS data sets that were
created. Once both have been selected, click Choose Variable
to select the desired variables from the data set (check the
box next to In MDM) and specify the identification code
variables (check the box next to ID). Please note that you are
not required to select all of the variables from the list to be in
the MDM, but you must specify an ID variable. You must
also specify whether there are any missing data and how
missing data should be handled during the analyses. If you
select Running Analyses for the missing data, HLM will
perform a pairwise deletion; if you select Making MDM,

HLM will perform a listwise deletion. In the next step,
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PASW Statistics Data Editor £ Level_2.sav [DataSet2] - PASW Statistics D

|83 Level_1.sav [DataSet1] -

Fie Ede Vew Data Transform Analyze Graphs (Utites Add | Fie Edt Vew Data Transform Anahze G
SEe M e~ Bl S0 [ o
Team_ID Shots_on_five Life_Satisfaction Team_ID Coach_Exper
1 01 3.00 18.80 ience
2 01 3.00 18.00 1 01 2.00
301 4.00 21.00 2 02 3.00
4 01 4.00 20.50 3 03 3.00
5 |01 3.00 19.00 4 04 2.00
6 01 2.00 12.10 5 05 1.00
701 2.00 13.49 6 06 2.00
8 01 3.00 14.89 T o7 1.00
9 01 3.00 12.80 8 08 3.00
10 |02 4.00 24.70 9 09 1.00

Figure 4. Example of SPSS data file as required by HLM. The image on the left represents the data for level-1. The

image on the right represents the data for level-2.

ensure that under the Structure of Data section, Cross sectional
is selected. Under MDM File Name, provide a name for the
current file, add the extension “.mdm”, and ensure that the
input file type is set to SPSS/Windows. Finally, in the MDM
Template File section, choose a name and location for the
template files.

To run the analyses, click Make MDM, and then click
Check Stats. Checking the statistics is an invaluable step that
should be performed carefully. At this point, the program
will indicate any specific missing data. After this process is
complete, click Done and a new window will open where it
is possible to build the various models and run the required
analyses. Before continuing, ensure that the optimal output
file type is selected by clicking File = Preferences. In this
window, it is possible to make a number of adjustments to
the output; however, the most important is to the Type of
Output. For the clearest and easiest to interpret output file, it
is strongly recommended that HTML output is selected as
well as view HTML in default browser.

Unconstrained (null) Model

As a first step, a one-way analysis of variance is performed
to confirm that the variability in the outcome variable, by
level-2 group, is significantly different than zero. This tests
whether there are any differences at the group level on the

outcome variable, and confirms whether HLM is necessary.
Using the dialogue box, Life_Satisfaction is entered into the
model as an “outcome variable” (see Figure 5). The program
will also generate the level-2 model required to ensure that
the level-1 model is estimated in terms of the level-2
groupings (Coach_Experience). Click Run Analysis, then Run
the Model Shown to run the model and view the output
screen. The generated output should be identical to Figure 6.

The results of the first model test yield a number of
different tables. For this model, the most important result to
examine is the chi-square test (x?) found within the Final
Estimation of Variance Components table in Figure 6. If this
result is statistically significant, it indicates that there is
variance in the outcome variable by the level-2 groupings,
and that there is statistical justification for running HLM
analyses. The results for the present example indicate that
x%(29) = 326.02, p < .001; which supports the use of HLM.

As an additional step, the ICC can be calculated to
determine which percentage of the variance in
Life_Satisfaction is attributable to group membership and
which percentage is at the individual level. There is no
consensus on a cut-off point, however if the ICC is very low,
the HLM analyses may not yield different results from a
traditional analysis. The ICC (see Equation 12) can be
calculated using the o? (level-1) and t (level-2) terms at the
top of the output, under the Summary of the model specified
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Figure 5. Building the unconstrained (null) model in HLM.

heading in Figure 6 (see Equation 25).
O

Too + o2

_ 14.96 25)
14.96 + 14.61

= 0.506

In the present example, 0> = 14.61 and 7 = 14.96, which
results in an ICC of 0.506. This result suggests that 51% of
the variance in Life Satisfaction is at the group level and 49%
is at the individual level.

Random Intercepts Model

Next, test the relationship between the level-1 predictor
variable and the outcome variable. To test this, return to the
dialogue box and add Shots_on_5 as a variable group centered
in level-1. In most cases, the level-1 predictor variable is
entered as a group centered variable in order to study the
effects of the level-1 and level-2 predictor variables
independently and to yield more accurate estimates of the
intercepts. We would select variable grand centered at level-1
if we were not interested in analyzing the predictor
variables separately (e.g. an ANCOVA analysis, which tests
one variable while controlling for the other variable, would
require grand centering). Leave the outcome variable
(Life_Satisfaction) as it was for the first model and ensure
that both error terms (Ug; and Uy ;) are selected in the “Level
2 Model” (see Figure 7). By selecting both error terms, the
analyses include estimates of both the between- and within-
error. Specifically, Up; starts with the assumption that life
satisfaction varies from team to team and U, ; starts with the
assumption that strength of the relationship between
Shots_on_5 and Life_Satisfaction varies from group to
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sSpecifications for this HLM2 run
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Figure 6. HLM output tables — Unconstrained (null) model.
This represents a default output in HLM.
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Figure 7. Building the random intercepts model in HLM. ey
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group. Click Run Analysis to run this model and view the *Fa TR ¢ S a L
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explains 71.5% of the variance in Life_Satisfaction. Figure 8. HLM output tables — Random intercepts model.
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Figure 9. Building the means as outcomes model in HLM.

Means as Outcomes Model

The next step is to test the significance and direction of
the relationship between the level-2 predictor variable and
the outcome variable. To test this, return to the dialogue box
and remove Shots_on_5 as a group centered predictor
variable in level-1 by selecting delete variable from model and
(Life_Satisfaction). Add
Coach_Experience as a grand centered predictor variable at

leave the outcome variable
level-2 (see Figure 9). The issue of centering at level-2 is not
as important as it is at level-1 and is only necessary when
we are interested in controlling for the other predictor
variables. When examining the level-1 and level-2 predictor
variables separately, centering will not change the
regression coefficients but will change the intercept value.
When the level-2 predictor variable is centered, the level-2
intercept is equal to the grand mean of the outcome
variable. When the level-2 predictor variable is not centered,
the level-2 intercept is equal to the mean score of the
outcome variable when the level-2 predictor variables equal
zero. In the current example, a mean score of zero at level-2
is not of much interest given that coach experience scores
ranged from 1 through 3, therefore the grand centered option
was appropriate. When interested in the slopes and not the
intercepts, centering is not usually an issue at level-2. Click
Run Analysis to run the model and view the output screen.
The output generated should be identical to Figure 10.

A regression coefficient is estimated and, as before, its
significance confirms the relationship between the level-2
predictor variable and the outcome variable (at level-1). To
view the results, see COACH_EX yo1in the output under the
Final estimation of fixed effects table in Figure 10. The results

of this analysis support that Coach_Experience predicts
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Fiqure 10. HLM output tables — Means as outcomes model.
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Figure 11. Building the random intercepts and slopes model
in HLM. The mixed model must be obtained by clicking on
“Mixed”.

Life_Satisfaction, b = 4.78, p < .001. For a measure of effect

size, the explained variance in the outcome variable, by the

level-2 predictor variable can be computed using Equation

27.

2 _ il = )
Tt

(14.96 — 1.68)
T 1496
= 0.888

(27)

where 7% is the 7 value obtained in the first step (null-
model testing) under the Summary of the model specified table
in Figure 6 (T?uu = 14.96). Next 72mens is the 7 value obtained
under the Summary of the model specified table in the present
analysis (72means = 1.68; Figure 10). The results confirm that
Coach_Experience explains 88.8% of the between measures
variance in Life_Satisfaction.

Random Intercepts and Slopes Model

The final step is to test for interactions between the two
predictor variables (level-1 and level-2). Please note that if
only interested in the main effects of both predictor
variables (level-1 and level-2), this final step is not necessary.
Alternatively, this final model could be used to test the two
previous models instead of running them separately. If you
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Figure 12. HLM output tables — Random intercepts and
slopes model.



choose to run this final model instead of testing the main
effects separately, be aware that the results will differ
slightly because of the maximum likelihood estimation
methods used to calculate the models.

To test this final model, return to the dialogue box and
add Shots_on_5 as a group centered predictor variable in
level-1, leave the remaining terms from the 3 model, and
add the level 2 predictor variable, Coach_Experience as a
grand centered variable to both equations (fo and f1). By adding
it to both equations, the interaction term does not
accidentally account for all of the variance. The error terms
(Uvj and Uij) should be selected for both equations (see
Figure 11). Finally, click Run Analysis to run the model and
view the output screen. The generated output should be
identical to Figure 12.

For this output, we will focus on the interaction term
only. The results of the interaction can be found under the
Final estimation of fixed effects table of Figure 12 (see
COACH_EX y11 ). HLM results reveal that the interaction
was not significant (b = 0.38, p = .169), providing support that
there is no cross-level interaction between the level-1 and
level-2 predictors.

Reporting the Results

Now that the analyses are complete, it is possible to
summarize the results of the HLM analysis. The statistical
analyses conducted in the present example can be
summarized as follows:

Hierarchical linear modeling (HLM) was used to
statistically analyze a data structure where players (level-1)
were nested within teams (level-2). Of specific interest was
the relationship between player’s life satisfaction (level-1
outcome variable) and both the number of shots on the net
(level-1 predictor variable) and their coach’s experience
(level-2 predictor variable). Model testing proceeded in 4
phases: unconstrained (null) model, random intercepts
model, means-as-outcome model, and intercepts- and
slopes-as-outcomes model.

The intercept-only model revealed an ICC of .51. Thus,
51% of the variance in life satisfaction scores is between-
team and 49% of the variance in life satisfaction scores is
between players within a given team. Because variance
existed at both levels of the data structure, predictor
variables were individually added at each level. The
random-regression coefficients model was tested using
players’ shots on net as the only predictor variable. The
regression coefficient relating player shots on net to life
satisfaction was positive and statistically significant (b = 2.89,

p < .001). Player’s life satisfaction levels were higher when
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their shots on net levels were also higher (relative to those
whose shots on net were lower). Next, the means-as-
outcomes model added coaches’ experience as a level-2
predictor variable. The regression coefficient relating
coaches’ experience to player life satisfaction was positive
and statistically significant (b = 4.784, p < .001). Life
satisfaction levels were higher in teams with coaches who
had more experience (relative to coaches who had less
experience). Finally, the intercepts model and slopes-as-
outcomes model were simultaneously tested with all
predictor variables tested in the model to test the presence of
any interactions between predictor variables. The cross-level
interaction between shots on net and coaches’ experience
was not statistically significant (b = 0.38, p = .169); which
means that the degree of coach experience had no influence
on the strength of the relationship between shots on net and
life satisfaction.

Conclusion

Since its inception in the 1970s, HLM has risen in
popularity as the method of choice for analyzing nested
data. Reasons for this include the high prevalence of
hierarchically organized data in social sciences research, as
well as the model’s flexible application. Although HLM is
recommended disaggregation  and
these

limitations, it is not without its own challenges.

generally over

aggregation techniques because of methods’

HLM is a multi-step, time-consuming process. It can
accommodate any number of hierarchical levels, but the
workload increases exponentially with each added level.
Compared to most other statistical methods commonly used
in psychological research, HLM is relatively new and
various guidelines for HLM are still in the process of
development (Beaubien et al., 2001; Raudenbush & Bryk,
2002). Prior to conducting an HLM analysis, background
interaction effects between predictor variables should be
accounted for, and sufficient amounts of within- and
between-level variance at all levels of the hierarchy should
be ensured. HLM presumes that data

distributed: When the assumption of normality for the

is normally

predictor and/or outcome variable(s) is violated, this range
restriction biases HLM output. Finally, as previously
mentioned, outcome variable(s) of interest must be situated
at the lowest level of analysis in HLM (Beaubien et al., 2001).

Although HLM is relatively new, it is already being used
in novel ways across a vast range of research domains.
Examples of research questions analyzed using HLM
include the effects of the environment on aspects of youth
development (Avan & Kirkwood, 2001; Kotch, et al., 2008;
Lyons, Terry, Martinovich, Peterson, & Bouska, 2001),



longitudinal examinations of symptoms in chronic illness
(Connelly, et al, 2007; Doorenbos, Given, Given, &
Verbitsky, 2006), relationship quality based on sexual
orientation (Kurdek, 1998), and interactions between patient
and program characteristics in treatment programs (Chou,
Hser, & Anglin, 1998).
this
introduction to HLM and methods for dealing with nested

Throughout tutorial we have provided an
data. The mathematical concepts underlying HLM and our
theoretical hypothesis testing example represent only a
small and simple example of the types of questions
researchers can answer via this method. More complex
forms of HLM are presented in Hierarchical Linear Models:
Applications and Data Analysis Methods, Second Edition
(Raudenbush & Bryk, 2002). Readers seeking information on
statistical packages available for HLM and how to use them
are directed to HLM 6: Hierarchical Linear and Nonlinear

Modeling (Raudenbush et al., 2006).
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