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Two-sided assembly lines are especially used at the assembly of large-sized products, such as trucks and
buses. In this type of a production line, both sides of the line are used in parallel. In practice, it may
be necessary to optimize more than one conflicting objectives simultaneously to obtain effective and
realistic solutions. This paper presents a mathematical model, a pre-emptive goal programming model
for precise goals and a fuzzy goal programming model for imprecise goals for two-sided assembly line
balancing. The mathematical model minimizes the number of mated-stations as the primary objective
and it minimizes the number of stations as a secondary objective for a given cycle time. The zoning
constraints are also considered in this model, and a set of test problems taken from literature is solved.
The proposed goal programming models are the first multiple-criteria decision-making approaches for
two-sided assembly line balancing problem with multiple objectives. The number of mated-stations, cycle
time and the number of tasks assigned per station are considered as goals. An example problem is solved
and a computational study is conducted to illustrate the flexibility and the efficiency of the proposed
goal programming models. Based on the decision maker's preferences, the proposed models are capable
of improving the value of goals.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Assembly lines are usually designed in a range of industries to
produce a high-volume standardized homogeneous products. An as-
sembly line comprises a series of successive stations connected to-
gether by a material handling system in which the components are
consecutively assembled into a final product and they are moved
from one station to its successive station until they reach to the end
of the line. The components are processed depending on a set of
tasks, and they are performed at each station during a fixed time
called as cycle time. The tasks are allocated to stations according to
given precedence relationships among tasks and specific restrictions
which aim to optimize one or more objectives, such as minimizing
the number of stations for a given cycle time or minimizing the cycle
time for a given number of stations. A feasible assignment of tasks to
stations should guarantee that the following constraints: (i) each task
must be assigned to exactly one station (the assignment constraint),
(ii) all precedence relationships among tasks must be satisfied (the
precedence constraint) and (iii) the total task times of all the tasks

∗ Corresponding author.
E-mail address: uozcan@selcuk.edu.tr (U. Özcan).
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assigned to a station cannot exceed the cycle time (the cycle time
constraint). The problem of assigning tasks to stations in such a way
that one or more objectives are optimized subject to some specific
restrictions is called as the assembly line balancing problem (ALBP).

In the literature, generally, the studies on assembly lines are clas-
sified as; straight (traditional) assembly lines, and U-lines (U-shaped
assembly lines) by means of the line layout, and also it is classi-
fied as means of the number of product models produced on the
line; single-model, and mixed/multi-model lines. For more details on
classification of assembly lines refer to Boysen et al. [1]. Many stud-
ies on assembly lines including exact solution methods, heuristics,
and meta-heuristic approaches have been reported in the literature.
The detailed reviews of such studies are given at Baybars [2], Ghosh
and Gagnon [3], Erel and Sarin [4], and more recently by Scholl and
Becker [5], and Becker and Scholl [6].

Assembly lines can also be categorized as one-sided assembly
lines and two-sided assembly lines. The difference between them is
associated with the design of the line, i.e., in the two-sided assembly
lines, the left-side and the right-side of the line are used in parallel,
the operators working in opposite sides of the line can perform
their tasks on the same component simultaneously, whereas only a
specific side of the line is used in the one-sided assembly lines. Two-
sided assembly lines are typically found in assembling large-sized
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Fig. 1. Precedence diagram, task times and preferred operation directions of the 16-task problem.
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Fig. 2. The task assignments of (a) a one-sided assembly line and (b) a two-sided assembly line with a cycle time of 15.

high-volume products, such as trucks and buses [7]. In two-sided
assembly lines, some tasks can be assigned to only one side of the two
sides: L (left) and R (right)-type tasks, while others can be assigned
to either side of the line: E (either)-type tasks. An example problem
from Lee et al. [7] is used to clarify the two-sided assembly line
balancing concepts. Precedence relations among tasks, task times,
and preferred operation directions of tasks of the example problem
are given in Fig. 1. The number of tasks is 16.

In Fig. 1, the numbers in the nodes represent the tasks, the la-
bels (ti,di) below the nodes represent the completion time of task i,
and the preferred operation direction (L, R, E) of task i, respectively.
L indicates that the task i should be assigned to a left-side station
and R indicates that the task i should be assigned to a right-side
station. Finally, E indicates that the task i can be performed at ei-
ther side of the line. The directed arrow between node h and node
i implies that task h immediately precedes task i. Fig. 2 illustrates
the optimal solution obtained from a one-sided assembly line and
a two-sided assembly line assuming a cycle time of 15 time units.
The preferred operation directions of tasks assumed to be R only in
one-sided assembly line balance.

In Fig. 2, task numbers are placed at their relevant positions in-
side the bars. For every task, its starting time and its finishing time
are shown alongside the bars. Shaded rectangles indicate either un-
avoidable delay between two consecutive tasks, or idle time at the
end of the cycle time. The one-sided assembly line balance given in
Fig. 2(a) has six stations. Operators can perform tasks continuously
without any interruption since the idle time of a station is concen-
trated at the end of the cycle time. The two-sided assembly line
balance given in Fig. 2(b) has also six stations. A pair of two di-
rectly facing stations called a mated-station (e.g. stations I and II)
and one of them calls the other as a companion. In the solution, the
number of mated-stations (i.e., line length) is four. While balancing
two-sided assembly lines, idle time is sometimes unavoidable even

between tasks assigned to the same station. Suppose that task h is
assigned to a station and task i is assigned to the companion of this
station. Task i cannot be started unless task h completed. Therefore,
the sequence-depended finishing time of tasks are taken into ac-
count, unlike a one-sided assembly line. In Fig. 2(b), for example,
task 1 is assigned to the left-side of mated-station and tasks 2, and
4 are assigned to the right-side of the same mated-station. Task 4
cannot be started at the finishing time of task 2, since task 1 is the
immediate predecessor of task 4. So the starting time of task 4 is
equal to the finishing time of task 1.

According to Bartholdi [8], in practice, a two-sided assembly line
can provide several advantages over a one-sided assembly line. These
are: (i) the assembly line length can be shorter than a one-sided as-
sembly line; (ii) it can reduce material handling cost, workers move-
ment, set up time, and the amount of throughput time; and (iii) it
can also reduce cost of tools, and fixtures.

In the mathematical complexity, one-sided assembly line balanc-
ing problem (OALBP) is NP-hard class of combinatorial optimization
problems [9]. The combinatorial structure of this problem makes it
difficult to obtain an optimal solution when the problem size in-
creases. Two-sided assembly line balancing problem (TALBP) is also
NP-hard class. In addition to the mathematical complexity of OALBP,
TALBP has also an additional level of complexity, since the tasks have
restrictions on the operation direction [8].

The TALBP can be classified as [7,10] TALBP-I: minimization of the
number of mated-stations (i.e., the line length) for a given cycle time,
and TALBP-II: minimization of the cycle time for a given number
of mated-stations. However, in TALBP-I, assume that there are two
different solutions with the same number of mated-stations, where
one of these solutions may be better balanced than the other one,
since one of them may have fewer stations than the other. So, the
number of stations should be considered as well as the number of
mated-stations.
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Table 1
Summary of the literature on two-sided assembly lines.

Authors Methodology Type of problem

Bartholdi [8] An interactive program with an assignment rule TALBP-I
Kim et al. [11] Genetic algorithm TALBP-I (with positional constraints)
Lee et al. [7] Group assignment procedure TALBP-I and TALBP-II
Baykasoglu and Dereli [12] Ant colony optimization algorithm TALBP-I (with zoning restrictions)
Hu et al. [13] Station-oriented enumerative algorithm TALBP-I
Simaria and Vilarinho [14] Mixed integer programming formulation and ant colony optimization algorithm TALBP-I (with zoning restrictions)
Kim et al. [15] Mixed integer programming formulation and genetic algorithm TALBP-II
Wu et al. [10] Branch-and-bound algorithm TALBP-I

Although many research is done for OALBP, TALBP is studied by
considerably few researchers. TALBP was first addressed by Bartholdi
[8]. He designed an interactive program that assists assembly line
managers to assign tasks and presented an assignment rule. Kim
et al. [11] presented a genetic algorithm approach to solve the prob-
lem. Lee et al. [7] developed an assignment procedure for TALBP with
two decision criteria, such as work relatedness and work slackness.
Baykasoglu and Dereli [12] developed an ant colony optimization
based heuristic algorithm to solve TALBP with zoning constraints. Hu
et al. [13] presented a station-oriented enumerative algorithm for
TALBP. Simaria and Vilarinho [14] addressed two-sidedmixed-model
assembly line balancing problem. They developed a mathematical
programming model which is only used as a means to formally de-
scribe the problem, and presented an ant colony optimization algo-
rithm to solve the problem. The mathematical programming model
proposed by Simaria and Vilarinho [14] has high complexity. So, op-
timal solutions cannot be obtained by using this model. Kim et al.
[15] presented a mathematical formulation and a genetic algorithm
approach for TALBP with the objective of minimizing the cycle time
for a given number of mated-stations. Wu et al. [10] presented a for-
mal formulation of TALBP-I problem, and they developed a branch-
and-bound algorithm to solve the problem optimally. Summary of
the studies conducted on two-sided assembly lines is also given in
Table 1.

As it can be seen in Table 1, three exact solution methodologies
are developed to solve TALBP optimally [10,14,15]. In this paper, a
new mixed integer programming (MIP) model is presented to solve
TALBP-I with single-model production environment, and determin-
istic task completion times. The proposed model is based on the
mathematical model proposed by Kim et al. [15]. The mathematical
model of Kim et al. [15] is modified for solving TALBP-I optimally.

In many of the solution techniques for ALBP, only one objec-
tive was considered, such as minimizing the number of stations
for a given cycle time, minimizing the cycle time for a given num-
ber of stations, etc. However, in real life applications, it may be
necessary to consider more than one objective simultaneously.
When the target values of the objectives can be easily determined
precisely by the decision maker(s), goal programming (GP) intro-
duced by Charnes and Cooper [16] is useful. Few studies using GP
approach to ALBP have been reported in the literature [17–23].
On the other hand, it may be difficult for the decision maker(s)
to precisely determine the target value of each objective, since
the target values may be imprecise, vague, or uncertain. Fuzzy set
theory is one of the useful tools for dealing with imprecision [24].
According to fuzzy set theory, imprecise, vague, or uncertain goals
or constraints can be determined with triangular, trapezoidal, or
linear membership functions [25]. There are only two studies using
the fuzzy goal programming model (FGP) to ALBP reported in the
literature [26,27]. For especially large-sized problems, many re-
searchers studied to develop modern heuristic approaches to solve
multi-objective ALBPs [28–30]. All multiple-criteria decision-making
(MCDM) researches for ALBP are concerned with the straight or
U-type ALBP.

To the best of knowledge of the authors, there is no published
study dealing with MCDM aspects of TALBP in the literature. In this
study, an MIP model is presented for the TALBP-I, firstly. Then, a
mixed integer goal programming model (MIGP) is developed for the
TALBP with precise and certain objectives. And also, a fuzzy mixed
integer goal programming (FMIGP) model is developed for the TALBP
with imprecise, vague, or uncertain goal value of each objective. The
proposed models, MIGP and FMIGP, are the first MCDM approaches
to the TALBP.

In TALBP, the primary objective is either to minimize the number
of mated-stations/the number of stations or minimize the cycle time.
Lee et al. [7] and Kim et al. [15] noted that various meaningful objec-
tives, e.g. minimizing the number of mated-stations, minimizing the
cycle time, minimizing workload deviation, maximizing work relat-
edness, maximizing work slackness and multiple objectives, may be
considered in a real TALBP. Decision maker(s) may desire to develop
a model considering the specific characteristics of the problem with
multiple objectives. In this study, the number of mated-stations, cy-
cle time and the number of tasks assigned per station goals which
are most frequently used in the literature are considered to design
our MIGP and FMIGP models.

The reminder of this paper is organized as follows. After this
introduction, the MIP formulation of TALBP-I is presented. In
Section 3, the GP in solving multi-objective problems is considered,
and MIGP model for TALBP with precise goals is developed. The FGP
is considered, and FMIGP model for the TALBP with multiple objec-
tives is formulated in Section 4. In Section 5 an example problem is
solved using the proposedMIGP and FMIGPmodels. In Section 6 a set
of small-sized problems taken from literature are solved optimally
using the proposed MIP model, and a test problem taken from lit-
erature is used to illustrate the effectiveness and efficiency of the
proposed MIGP and FMIGP models. Finally, some conclusions and
future research directions are presented in the final section. The
notations used in the models are listed in Appendix A.

2. Mathematical formulation of TALBP-I

Kim et al. [15] developed a mathematical model for the TALBP-
II. This model is the only published mathematical model for the
TALBP-II in the literature. The primary objective of the model is
minimizing the cycle time for a given number of mated-stations. The
mathematical model formulation of TALBP-II is as follows [15]:

Minimize ct (1)

subject to∑
j∈J

∑
k∈K(i)

xijk = 1 ∀i ∈ I (2)

∑
g∈J

∑
k∈K(h)

g · xhgk −
∑
j∈J

∑
k∈K(i)

j · xijk�0 ∀i ∈ I − P0, h ∈ P(i) (3)

t fi �ct ∀i ∈ I (4)
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tfi − tfh + � ·
⎛
⎝1 −

∑
k∈K(h)

xhjk

⎞
⎠ + � ·

⎛
⎝1 −

∑
k∈K(i)

xijk

⎞
⎠

� ti ∀i ∈ I − P0, h ∈ P(i), j ∈ J (5)

tfp−tfi +� · (1 − xpjk) + � · (1 − xijk)+� · (1 − zip)� tp ∀i ∈ I,

p ∈ {r|r ∈ I−(Pa(i) ∪ Sa(i) ∪ C(i)) and i < r}, j ∈ J, k ∈ K(i) ∩ K(p) (6)

tfi − tfp + � · (1 − xpjk) + � · (1 − xijk) + � · zip� ti ∀i ∈ I,

p ∈ {r|r ∈ I − (Pa(i) ∪ Sa(i) ∪ C(i)) and i < r}, j ∈ J, k ∈ K(i) ∩ K(p) (7)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K(i) (8)

zip ∈ {0, 1} ∀i ∈ I,p ∈ {r|r ∈ I − (Pa(i) ∪ Sa(i) ∪ C(i)) and i < r} (9)

tfi � ti, ∀i ∈ I (10)

Constraint (2) is the assignment constraint and it ensures that each
task is assigned to exactly one station. Constraint (3) is the prece-
dence constraint and it ensures that all precedence relations among
tasks are satisfied. Constraint (4) is the cycle time constraint and it
ensures that each of the finishing time of tasks does not exceed the
cycle time. Constraints (5)–(7) control the sequence-dependent fin-
ishing time of tasks. For every pair of task i and task h, if task h is an
immediate predecessor of task i, and they are assigned to the same

mated-station j, then constraint (5) becomes active, i.e., tfi − tfh� ti.
If two tasks do not have any precedence relations, and they are as-
signed to the same station (j, k), then constraints (6) and (7) become
active. If task i is assigned to an earlier station than task p, constraint

(6) becomes tfp−tfi � tp. Otherwise, constraint (7) becomes tfi −tfp� ti.
Constraints (8) and (9) are the integrality constraints.

The primary objective of the proposed model is the minimization
of the number of mated-stations (i.e., the line length) for a given
cycle time. As mentioned before, a solution may be better balanced
than the other one in two different obtained solutions, since one of
themmay have fewer stations than the other. Therefore, the number
of stations should also be minimized as a secondary objective. Wu
et al. [10] addressed this kind of problem with a secondary objective
of minimizing the number of required stations. They presented the
formal formulation of the problem only. In this study, an MIP model
is developed for TALBP-I to solve optimally. The proposed mathe-
matical model formulation of TALBP-I is as follows:

Minimize
∑
j∈J

(Fj + Gj) + � ·
∑
j∈J

∑
k=1,2

Ujk (11)

subject to

Constraints (2)–(10), and
∑
i∈I

xijk − ‖Wjk‖ · Ujk�0 ∀j ∈ J, k ∈ K(i) (12)

∑
k=1,2

Ujk − 2 · Fj − Gj = 0 ∀j ∈ J (13)

Ujk ∈ {0, 1} ∀j ∈ J, k = 1, 2 (14)

Fj,Gj ∈ {0, 1} ∀j ∈ J (15)

Objective function (11) minimizes the number of mated-station (i.e.,
the line length) as the primary objective, and it also minimizes the

number of stations (i.e., the number of operator) as a secondary ob-
jective. Constraint (12) is the station constraint developed by Deckro
[18] for straight OALBP. It is modified for TALBP. If station (j, k) is uti-
lized, i.e., if a task is assigned to station (j, k), then Ujk will be equal
one; otherwise Ujk will be equal zero. Constraint (13) ensures that if
the left-side station of a mated-station (j, 1), and the right-side sta-
tion of the samemated-station (j, 2) are utilized together, then Fj will
be equal to one, and Gj will be equal to zero; otherwise Gj will be
equal to one, and Fj will be equal to zero. Therefore, total number of
mated-stations is equal to the sum of Fj and Gj for all j. Constraints
(14) and (15) are the integrality constraints.

Some tasks are forced to be assigned together to the same sta-
tion (e.g. tasks may require the same tool, or fixture, and they may
be performed on the same station using one tool, or fixture in order
to reduce the cost of tools and fixtures), and other tasks are prohib-
ited from being assigned to the same station (e.g. some tasks must
not be assigned to the same station due to the their specific appli-
cations, such as welding and painting tasks). These constraints are
known as compatible (positive) and incompatible (negative) zoning
constraints, respectively. The following constraints (16) and (17) rep-
resent compatible and incompatible zoning constraints, respectively.
Constraint (16) ensures that compatible tasks h and i are assigned
to the same station (j, k), and constraint (17) ensures that incompat-
ible tasks h and i are not assigned to the same station (j, k). In the
equations, CZ and IZ represent sets of pairs of tasks for compatible
and incompatible zoning, respectively.

xhjk − xijk = 0 ∀(i,h) ∈ CZ, j ∈ J, k ∈ K(i) ∩ K(h) (16)

xhjk + xijk�1 ∀(i,h) ∈ IZ, j ∈ J, k ∈ K(i) ∩ K(h) (17)

3. GP formulation

3.1. Goal programming

GP is a branch of MCDM and is perhaps the oldest MCDM tech-
nique, and it is widely used to solve multi-objective problems. GP
was first introduced by Charnes and Cooper [16]. Tamiz et al. [31]
reviewed the current state-of-the-art in GP. The general aim of GP is
the optimization of several conflicting goals precisely defined by the
decision maker(s) by minimizing the deviations from the target val-
ues. The original objectives are expressed as a linear equation with
target values and two auxiliary variables. This two auxiliary vari-
ables represent under-achievement of the target value by negative
deviation (d−) and over-achievement of the target value by posi-
tive deviation (d+). The unwanted deviations between target values
of objectives are minimized hierarchically. Hence, the goals of pri-
mary importance are satisfied first, and it is only then the goals of
second importance are considered, and so forth. This variant of GP
used in this paper is known as lexicographic GP (LGP), also known as
non-Archimedian or pre-emptive GP. The framework of LGP model
is formulated as follows [32]:

LEXMIN a =
⎡
⎣ ∑
q∈pr1

(�q · d−
q + �q · d+

q ), . . . ,
∑
q∈prr

(�q · d−
q + �q · d+

q ), . . . ,
∑

q∈prQ
(�q · d−

q + �q · d+
q )

⎤
⎦ (18)

subject to

fs(x)=, � , or�bs s ∈ S (19)

gq(x) + d−
q − d+

q = tvq q ∈ prr , r ∈ Q (20)

d−
q , d

+
q �0 q ∈ prr (21)

where prr represents the index set of goals placed in the rth priority
level, and �q and �q are the weighting factors for d+

q and d−
q , respec-

tively. fs(x) is the system constraint, gk(x) is the goal constraint and
tvq is the target value of goal q.
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3.2. Proposed MIGP model

The aim of the proposed MIGP model is to find an optimal two-
sided assembly line balance that minimizes the number of mated-
station, cycle time and the task load of stations hierarchically. These
goals are the mostly used goals in the literature [22,23,26,27]. In
addition to these goals, several goals can also be considered [17].

Goal 1: Number of mated-stations utilized in two-sided assembly
line should not exceed IST.

If a specified number of mated-stations is imposed by the decision
maker(s), then the following constraint can be written:
∑
j∈J

(Fj + Gj)� IST (22)

The goal constraint of the number of mated-stations with deviational
variables is as follows:
∑
j∈J

(Fj + Gj) + d−
1 − d+

1 = IST (23)

The minimization of d+
1 to zero ensures that the total number of

mated-stations will be IST or less.
Goal 2: Finish time of a task should not exceed C.
The goal constraint of the cycle time given in constraint (4) with

deviational variables is as follows:

tfi + d−
2i − d+

2i = C ∀i ∈ I (24)

The minimization of the sum of d+
2i to zero ensures that the cycle

time of the system will be C or less.
Goal 3: Number of tasks per stations should not exceed TSK.
If a specified total number of tasks which are assigned to each

station is imposed by the decision maker(s) due to the some phys-
ical, or technological reasons, then the following constraint can be
written:
∑
i∈I

xijk�TSK ∀j ∈ J, k ∈ K(i) (25)

The goal constraint of the task load with deviational variables is as
follows:
∑
i∈I

xijk + d−
3jk − d+

3jk = TSK ∀j ∈ J, k ∈ K(i) (26)

The minimization of the sum of d+
3jk to zero ensures that the task

count at each station will be TSK or less.
In LGP, it is assumed that the decision maker(s) can explicitly de-

fine all the target value of the goals. Determining the target value
of the goals is a difficult task for the decision maker(s). The decision
maker(s) should determine the target value of the goals considering
the specific conditions of the problem. No calculation is necessary to
get the values of IST, C and TSK. These values are completely deter-
mined by the decision maker(s) considering the specific situations
of the problem.

Bartholdi [8] noted that a two-sided assembly line can be more
space-efficient since the line length of a two-sided assembly line can
be shorter than the line length of a one-sided assembly line. He also
noted that a shorter line can provide some advantages such as lower
material handling costs and lower tools and fixtures costs. More-
over, he mentioned that a two-sided assembly line can require fewer
operators than a one-sided assembly line. Because of the specific
characteristics of two-sided assembly lines, the line length has more
importance than the number of operators. As shown in Fig. 2, both
the one-sided assembly line balance and the two-sided assembly line
balance have the same number of stations. However, two-sided as-
sembly line needs a shorter physical line length than the one-sided

assembly line. Therefore, in the MIP model, minimizing the num-
ber of mated-stations is used as the primary objective. However, as
mentioned before, minimizing the number of stations should also
taken into consideration if the cycle time is given.

The number of stations depends on the number of mated-
stations. However, the number of stations does not clearly
determined for a given number of mated-stations. Due to
the operation direction constraints and the precedence con-
straints among tasks, sometimes tasks may be assigned to
only one side of a mated-station. Therefore the number of sta-
tions may not be equal to 2 ∗ the number of mated-stations
or 2 ∗ the number of mated-stations-1. As a result, it can be
said that the number of stations is less than or equal to 2 ∗
the number of mated-stations (i.e., 1� the number of stations
�2 ∗ the number of mated-stations). This can be seen at Fig. 2b
clearly. This condition is true when a fixed cycle time is given. On
the contrary, in the MIGP model, the minimization of the cycle time
is considered as a goal. The target value of cycle time goal is deter-
mined by the decision maker(s) according to his/her preferences.
Gökçen and A�gpak [23] and Toklu and Özcan [26] reported that the
number of stations and cycle time goals are conflicting goals. When
the cycle time decreases enough, the number of stations increases.
And also, the maximum capacity of the line (i.e., stations) is used.
As a result, it is not necessary to consider the number of stations as
a goal, due to the number of mated-stations is already considered
as a goal.

The proposed MIGP model for the TALBP with multiple precise
objectives is formulated as follows:

LEXMIN

⎧⎨
⎩d+

1 ,
∑
i∈I

d+
2i,

∑
j∈J

∑
k=1,2

d+
3jk

⎫⎬
⎭ (27)

subject to

Goal constraints: (23), (24) and (26),
System constraints: (2), (3), (5)–(10), (12)–(15) and
Non-negativity constraints:

d−
1 ,d

+
1 �0 (28)

d−
2i,d

+
2i�0 i ∈ I (29)

d−
3jk,d

+
3jk�0 ∀j ∈ J, k = 1, 2 (30)

The positive and negative zoning constraints can also be added as
precise goals by adding deviation variables. The goal constraints of
the positive and negative zoning constraints given in constraints (16)
and (17) are as follows, respectively:

xhjk−xijk+d−
4ihjk−d+

4ihjk = 0 ∀(i,h) ∈ CZ, j ∈ J, k ∈ K(i) ∩ K(h) (31)

xhjk+xijk+d−
5ihjk − d+

5ihjk = 1 ∀(i,h) ∈ IZ, j ∈ J, k ∈ K(i) ∩ K(h) (32)

The minimization of the sum of the deviational variables d−
4ihjk,d

+
4ihjk

to zero ensures that the compatible tasks h and i will be assigned
to the same station for ∀(i,h) ∈ CZ. Similarly, the minimization of
the sum of the deviational variables d+

5ihjk to zero ensures that the

incompatible tasks h and i will not be assigned to the same station
for ∀(i,h) ∈ IZ.

4. FGP formulation

4.1. Fuzzy goal programming

FGP using the membership functions was initially described by
Narasimhan [33], and many studies of FGP have been presented in
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the literature. Chanas and Kuchta [34] provide an extensive literature
survey and classification to FGP models.

A FGP problem containing Q fuzzy goals (Zq(x)) with solution set
of x is defined as follows:

Optimize Zq(x) � gq(or Zq(x) ≺ gq) q ∈ Q (33)

Ax�b (34)

x�0 (35)

where Zq(x) � gq (orZq(x) ≺ gq) indicates that the qth fuzzy goal is
approximately greater than or equal to (approximately less than or
equal to) the aspiration level gq. The linear membership function �q
for the qth fuzzy goal is defined as [35];

�q =

⎧⎪⎪⎨
⎪⎪⎩

1 if Zq(x)�gq
Zq(x) − lq
gq − lq

if lq < Zq(x) < gq

0 if Zq� lq

(36)

for Zq(x) � gq and as

�q =

⎧⎪⎪⎨
⎪⎪⎩

1 if Zq(x)�gq
uq − Zq(x)
uq − gq

if gq < Zq(x) <uq

0 if Zq�uq

(37)

for Zq(x) ≺ gq, where lq (or uq) is the lower (or upper) tolerance limit
for the qth fuzzy goal Zq(x) � gq (orZq(x) ≺ gq).

Tiwari et al. [36] proposed a weighted additive model to solve
this problem which uses flexibility to determine the priority of the
fuzzy goals. The model is defined as follows:

Maximize
Q∑

q=1

wq�q (38)

�q�
Zq(x) − lq
gq − lq

(
or �q�

uq − Zq(x)
uq − gq

)
q ∈ Q (39)

Ax�b (40)

x,�q�0 q ∈ Q (41)

�q�1 q ∈ Q (42)

where wq is the weight of the qth fuzzy goal constraint and �q is
the achievement degree of the qth fuzzy goal:

Q∑
q=1

wq = 1 q ∈ Q (43)

4.2. Proposed FMIGP model

In this study, the goals which are given at Section 3 are considered
as the fuzzy environment.

The first fuzzy goal is the number of mated-stations in the two-
sided assembly line that is approximately less than or equal to IST:

Z1 =
∑
j∈J

(Fj + Gj) ≺ IST (44)

The second fuzzy goal is the finishing time of a task is approximately
less than or equal to C:

Z2 = tfi ≺ C ∀i ∈ I (45)

Z1

IST

1

0
u1

� Z
1

Fig. 3. Membership function of the fuzzy goal representing the number of mated-s-
tations.

1

0

Z2

u2

� Z
2

C

Fig. 4. Membership function of the fuzzy goal representing the cycle time.

1

0

Z3

u3

� Z
3

TSK

Fig. 5. Membership function of the fuzzy goal representing the task load of stations.

The third fuzzy goal is the total number of tasks which are assigned
to each station is approximately less than or equal to TSK:

Z3 =
∑
i∈I

xijk ≺ TSK ∀j ∈ J, k ∈ K(i) (46)

Assume that u1, u2 and u3 are the upper tolerance limit and IST,
C and TSK are the lower tolerance limit of the fuzzy goals Z1, Z2
and Z3imposed by the decision maker(s), respectively. The linear
membership function �Zq for the qth fuzzy goal is defined as follows
(Figs. 3–5):

�Z1
=

⎧⎨
⎩
1 if Z1� IST
(u1 − Z1)/(u1 − IST) if IST < Z1 <u1
0 if Z1�u1

(47)

�Z2
=

⎧⎨
⎩
1 if Z2�C
(u2 − Z2)/(u2 − C) if C < Z2 <u2
0 if Z2�u2

(48)

�Z3
=

⎧⎨
⎩
1 if Z3�TSK
(u3 − Z3)/(u3 − TSK) if TSK < Z3 <u3
0 if Z3�u3

(49)
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The fuzzy goals are then converted to the following formulations:

�Z1
� (u1 − Z1)/(u1 − IST) (50)

�Z2
� (u2 − Z2)/(u2 − C) (51)

�Z3
� (u3 − Z3)/(u3 − TSK) (52)

0��Z1
,�Z2

,�Z3
�1 (53)

Finally, the proposed FMIGP model for TALBP with multiple impre-
cise objectives is formulated as follows:

Maximize f (�) = w1 · �Z1
+ w2 · �Z2

+ w3 · �Z3
(54)

subject to

Fuzzy goal constraints:

(u1 − IST) · �Z1
+

∑
j∈J

(Fj + Gj) − u1�0 (55)

(u2 − C) · �Z2
+ tfi − u2�0 ∀i ∈ I (56)

(u3 − TSK) · �Z3
+

∑
i∈I

xijk − u3�0 ∀j ∈ J, k ∈ K(i) (57)

System constraints: (2), (3), (5)–(10), (12)–(15) and (53).
Objective function (54) is the fuzzy decision with the weighted

achievement degrees of the fuzzy goals. In the proposed model, a
set of desirable levels of the achievement degrees of the fuzzy goals
can be determined as constraints, i.e., �Zq ��q, where �q(0��q�1)
is the desirable achievement degree for the qth fuzzy goal. The de-
termination of a desirable achievement degree for a fuzzy goal is a
difficult task for the decision maker(s). Some useful methods can be
employed to represent a fuzzy goal's importance as a real number in
the range of [0, 1] [37]. The positive and negative zoning constraints
cannot be considered as fuzzy goals. Because a compatible zoning,
or an incompatible zoning can be either satisfied or unsatisfied.

5. Illustrative example

The proposed MIGP and FMIFP models are illustrated using an
example problem given in Fig. 1. Assume that the lower tolerance
limits (IST, C and TSK) and the upper tolerance limits (u1, u2 and u3)
of the fuzzy goals Z1, Z2 and Z3 are 4, 10, 2 and 6, 15, 4, respec-
tively. The illustrative example is solved using GAMS (general alge-
braic modeling system) mathematical programming package for the
following sequence of priorities of the goals: the number of mated-
station goal (P1)? the cycle time goal (P2)? the task load goal (P3).
Hence, for the proposed MIGP model, the deviation variables to be
minimized are prioritized as follows: first d+

1 , second d+
2i for all i ∈

Iand third d+
3jk for all j ∈ J, k=1, 2, and for the proposed FMIGP model,

the weights of the achievement degrees of the fuzzy goals are fixed
at w1 = 100/111, w2 = 10/111 and w3 = 1/111 from high-priority to
low-priority level. Only the lower tolerance limits of the goals are
used in MIGP model. The solutions obtained with MIGP and FMIGP
models are given in Table 2.

As shown in Table 2, in the results of MIGP, the cycle time goal is
not satisfied but the number of mated-station goal and the task load
goal are satisfied. The deviation of under-achievement of the num-
ber of mated-station goal (d+

1 ) is zero, and the deviation of under-
achievement of the task load goal (d+

3jk) are equal to zero for all

j ∈ J, k = 1, 2. The positive deviation variables (d+
2i) of tasks 4, 5 and

8 are 5, 3 and 1, respectively; the remainders are zero. The FMIGP
is also obtained similar results of MIGP. The achievement degrees
of the fuzzy goals Z1, Z2 and Z3 are 1.0, 0.0 and 1.0, respectively.

The achievement degree of the number of stations goal is zero. MIGP
model shows whether or not a goal is satisfied, but FMIGP model
shows the satisfaction degree of the goals.

In the literature, various approaches have been developed to con-
sidering relative importance of fuzzy goals in FGPmodels [33,36–39].
In this paper, the weighted additive model proposed by Tiwari et al.
[36] is used. The basic concept of the weighted additive model is to
use a single linear weighted utility function to determine the overall
preference of decisionmaker. The relative importance of goals is then
determined by decision maker(s). In the weighted additive model of
Tiwari et al. [36], heavy weights are given to higher priority level
goals. Similar weightsmay cause themisleading results. For example,
in illustrative example, suppose that the weights of the fuzzy goals
determined by the decision maker are w1=0.5, w2=0.4and w3=0.1
from high-priority to low-priority level. As a result, the achievement
degrees of the fuzzy goals Z1, Z2and Z3 are obtained to be 0.5, 0.8
and 1.0, respectively. In this case, the number of mated-station goal
is not fully satisfied. But Z1 has the highest priority level. In this
study, the weight parameters are determined through preliminary
experiments and they are fixed at 100/111, 10/111 and 1/111 from
high-priority to low-priority level for all considered test problems.
There are some approaches those have been developed to specify the
relative weight of goals in the literature [40]. If the importance rela-
tions among the goals are not determined by the decision maker(s),
then the FGP method of Aköz and Petrovic [41] can be used.

6. Computational experiments and results

6.1. Computational experiments

A set of small-sized problems (P9, P12, P16 and P24) are solved
using the proposedmathematical model for TALBP-I. P9, P12 and P24
are taken from Kim et al. [11], and P16 is taken from Lee et al. [7].
In addition to this, the test problems are also solved under zoning
constraints. The zoning constraints for the test problems P9, P12 and
P24 are taken from Baykasoglu and Dereli [12]. For the test prob-
lem of P16, the compatible and incompatible zoning restrictions are
generated as {3, 6, 7}and {8, 9, 10}, respectively. The proposed model
is solved using the GAMS mathematical programming package on a
Pentium IV 3.0GHz PC with 512MB RAM. The runs which are not
finish interrupted at 7200 s. The results are shown in Table 3.

In Table 3, NM and NS represent the number of mated-stations
and the number of stations, respectively. LB represents the lower
bound of the number of stations presented by Hu et al. [13]. The
calculation of LB of TALBP-I is as follows.

Max = max
{[

LTotal
ct

]
,
[
RTotal
ct

]}
(58)

LB = 2 × Max+max
{
0,

[
ETotal−(Max × ct − LTotal)−(Max × ct − RTotal)

ct

]}

(59)

where, LTotal, RTotal and ETotal are the sum of completion time of
L, R and E directional tasks, respectively.

6.2. Computational results

In this section, a small-sized test problem (P24) taken from Kim
et al. [11] is used to illustrate the flexibility of the proposedMIGP and
FMIGP models. The required data of the problem is given in Table 4.

In LGP, the target value for each objective has to be defined
precisely. On the contrary, in FGP, the goals are determined in a
fuzzy environment with the lower and upper tolerance limits of the
goals. In this two MCDM technique, the priority of goals has to be
given. Table 5 shows the lower tolerance limits (they are used as
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Table 2
Summary of the results of the example problem for P1?P2?P3 .

Mated-station MIGP FMIGP

Assigned tasks (finish time) Assigned tasks (finish time)

Left-side Right-side Left-side Right-side

I 1[6], 4[15] 2[5], 5[13] 2[5], 4[15] 1[6], 5[14]
II 3[2], 6[6] 7[7], 8[11] 3[2], 6[6] 7[7], 10[11]
III 11[6], 14[10] 9[5], 10[9] 11[10], 14[14] 8[4], 9[9]
IV 12[5], 16[10] 13[6], 15[9] 12[5], 16[10] 13[6], 15[9]

Table 3
Results of MIP model.

Problem Cycle time Without zoning constraints With zoning constraints

MIP MIP

Optimal Solution Optimal Solution

LB NM NS CPU time (s) NM NS CPU time (s)

P9 3 6 3 6 0.093 4 7 1.421
4 5 3 5 0.296 3 5 0.234
5 4 2 4 0.140 2 4 0.156
6 3 2 3 0.109 2 3 0.203

P12 5 5 3 6 22.609 3 6 1.640
6 5 3 5 12.042 3 5 4.656
7 4 2 4 0.203 2 4 0.281
8 4 2 4 1.125 2 4 2.562

P16 15 6 4 6 132.859 4 6 13.640
16 6 3 6 2.031 4 6 30.234
18 5 3 6 153.328 3 6 0.296
19 5 3 5 18.125 3 6 0.359
20 5 3 5 156.609 3 5 0.875
21 4 3 5 399.640 3 5 1.046
22 4 2 4 0.671 3 5 2.015

P24 18 8 4 8 <7200 4 8 <7200
20 7 4 8 <7200 4 8 3999.265
24 6 3 6 1621.437 3 6 6604.968
25 6 3 6 <7200 3 6 <7200
30 5 3 5 <7200 3 5 <7200
35 4 2 4 259.671 2 4 242.890
40 4 2 4 <7200 2 4 <7200

Table 4
Data of the problem.

Task Immediate predecessor
(s)

Task
time

Preferred operation
direction

1 – 3 L
2 – 7 L
3 – 7 R
4 – 5 R
5 2 4 L
6 2, 3 3 E
7 3 4 R
8 5 3 E
9 6 6 E

10 7 4 E
11 1 4 L
12 8, 9 3 L
13 9 3 E
14 9, 10 9 R
15 4 5 R
16 11 9 L
17 12 2 E
18 13 7 E
19 13, 14 9 E
20 15 9 R
21 16, 17 8 L
22 18 8 E
23 19, 20 9 R
24 20 9 E

Table 5
Lower and upper tolerance limits and the priority sequence of goals.

Run The number of
mated-station goal

The cycle time goal The task load goal

IST u1 Priority
level

C u2 Priority
level

TSK u3 Priority
level

1 3 5 P1 20 25 P2 4 7 P3

2 3 5 P2 20 25 P3 4 7 P1

3 3 5 P3 20 25 P1 4 7 P2

4 4 6 P1 15 20 P3 2 5 P2

5 4 6 P2 15 20 P1 2 5 P3

6 4 6 P3 15 20 P2 2 5 P1

the target value for each goal in MIGP only), and the upper tolerance
limits with priority sequence of goals.

The values of the weights of the achievement degrees of the fuzzy
goals are fixed at 100/111, 10/111, and 1/111 from high-priority level
to low-priority level. All the test problems were solved using the
GAMS mathematical programming package. The results are given in
Table 6.

Table 6 shows the MIGP and FMIGP results. In Runs 1 and 4, due
to the decision maker's preference, the number of mated-station is
the most important criterion and the number of mated-station goal
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Table 6
Results of MIGP and FMIGP models.

Run MIGP FMIGP

Goal conditions Achievement degrees of fuzzy goals

Goal 1 Goal 2 Goal 3 �Z1
�Z2

�Z3

1 S U U 1.000 0.200 0.667
2 U S S 0.500 1.000 1.000
3 U S S 0.500 1.000 1.000
4 S U U 1.000 0.000 0.667
5 U S S 0.000 1.000 1.000
6 U S S 0.000 1.000 1.000

S: satisfied.

U: unsatisfied.

is fully satisfied. In Runs 2 and 6, the task load goal which is the most
important criterion due to the decisionmaker's preference is satisfied
and the achievement degree of the task load goal is improved from
0.667 to 1.0 for each runs. Similarly, in Runs 3 and 5, the cycle time
goal is fully satisfied.

The results of the MIGP model are similar to the results of the
FMIGP model. In the MIGP model, the goals are considered one by
one for a given priority level of the goals and the upper-level goals
are optimized before the lower-level goals are considered. The MIGP
model shows whether or not a goal is satisfied. However, the FMIGP
model determines the achievement degrees of each goal and pro-
vides a high flexibility to the decision maker(s) for the determining
the goals. Additionally, equal priorities between the goals can be
evaluated in the FMIGP model using the same weight of the fuzzy
goals (e.g. the weights can be fixed at 1

3 for three fuzzy goals).
According to the results shown at Table 6, the number of mated-

station goal conflicts with the cycle time goal, and also it conflicts
with the tasks load goal. These results obtained with the proposed
models are similar to those of GP model of Gökçen and A�gpak
[23], and FGP model of Toklu and Özcan [26]. The computational
times are high. All of the runs are interrupted after 7200 s. Hence,
the computational times for large-sized problems such as P65 and

Appendix A. Notations used in model formulations

Indices

i, h, p, r a task
j, g a mated-station

k a side of the line; k =
{
1 indicates a left-side station
2 indicates a right-side station

(j, k) a station of mated-station j and its operation direction is k

Parameters

I set of tasks; I = {1, 2, . . . , i, . . . ,nt}
J set of mated-stations; J = {1, 2, . . . , j, . . . ,nms}
AL set of tasks which should be performed at a left-side station; AL ⊂ I
AR set of tasks which should be performed at a right-side station; AR ⊂ I
AE set of tasks which can be performed at either side of a station; AE ⊂ I
P(i) set of immediate predecessors of task i
Pa(i) set of all predecessors of task i
S(i) set of immediate successors of task i
Sa(i) set of all successors of task i
P0 set of tasks that have no immediate predecessors; P0 = {i ∈ I|P(i) = ∅}
ti completion time of task i
� a very large positive number

C(i) set of tasks whose operation directions are opposite to operation direction of task i; C(i) =
⎧⎨
⎩
AL if i ∈ AR
AR if i ∈ AL
∅ if i ∈ AE

K(i) set of indicating the preferred operation directions of task i;K(i) =
⎧⎨
⎩

{1} if i ∈ AR
{2} if i ∈ AL
{1, 2} if i ∈ AE

P148 from Lee et al. [7] and P205 from Bartholdi [8] may be too
high. Based on the decision maker's preference as shown in Table 6,
the proposed MIGP and FMIGP models are capable of improving the
value of goals.

7. Conclusions and future research directions

In real life applications, more than one conflicting objectives are
considered simultaneously to obtain effective and realistic solutions.
Some goals can be easily determined as precise goals by the decision
maker(s). However, some goals should be determined as fuzzy goals,
because these goals may be imprecise, vague, or uncertain. In this
paper, a pre-emptive (lexicographic) MIGP model for precise goals,
and an FMIGP model for imprecise goals are proposed to deal with
the TALBP. The proposedMIGP and FMIGPmodels are the first MCDM
approaches to this problem. They are capable of simultaneously opti-
mizing more than one conflicting goals. Three objectives are consid-
ered. These are the minimization of the number of mated-stations,
the minimization of the cycle time and the minimization of the num-
ber of tasks which are assigned to each station. An example problem
is solved using MIGP and FMIGP models, and a computational study
is conducted to illustrate the flexibility and the efficiency of the
proposed MCDM approaches. The results of the run show the pro-
posed models are valid, and they provide that the decision maker(s)
can examine numerous scenarios regarding various conditions. Also,
an MIP formulation is proposed to solve TALBP optimally. The pro-
posedmodelminimizes the number ofmated-stations as the primary
objective, and it minimizes the number of stations as a secondary
objective for a given cycle time. The zoning constraints are also con-
sidered in this model, and a set of small-sized problem taken from
literature is solved using MIP model. Development of mathematical
formulations based on the proposed models considering balancing
mixed-model two-sided assembly lines should be of interest for fur-
ther studies. And also, further developments on two-sided assembly
lines should be made by considering different assembly line layouts,
such as U-shaped assembly lines.
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ct cycle time
� a small positive value, 0 < ��1/(2 ∗ nt + 1)
Wjk subset of all tasks that can be assigned to station (j, k)
‖Wjk‖ number of tasks in subset Wjk
CZ set of pairs of compatible tasks for positive zoning; CZ = {(i,h), . . . , (p, r)}
IZ set of pairs of incompatible tasks for negative zoning; IZ = {(i,h), . . . , (p, r)}
IST lower tolerance limit for the number of mated-stations
C lower tolerance limit for cycle time
TSK lower tolerance limit for the number of tasks which can be assigned to a station
u1 upper tolerance limit for the number of mated-stations
u2 upper tolerance limit for cycle time
u3 upper tolerance limit for the number of tasks which can be assigned to a station
w1 weight of the number of mated-station fuzzy goal
w2 weight of the cycle time fuzzy goal
w3 weight of the task load fuzzy goal

Decision variables

xijk 1, if task i is assigned to station (j, k); 0, otherwise

t fi finish time of task i
Fj 1, if mated-station j is utilized for both sides of the line; 0, otherwise
Gj 1, if mated-station j is utilized for only side of the line; 0, otherwise
Ujk 1, if station (j, k) is utilized; 0, otherwise
�Z1

achievement degree of the number of mated-station fuzzy goal
�Z2

achievement degree of the cycle time fuzzy goal
�Z3

achievement degree of the task load fuzzy goal

Indicator variables

zip 1, if task i is assigned earlier than task p in the same station; 0, if task p is assigned earlier than task i in the same station

Auxiliary variables

d−
1 deviation of under-achievement of IST

d+
1 deviation of over-achievement of IST

d−
2i deviation of under-achievement of C for task i

d+
2i deviation of over-achievement of C for task i

d−
3jk deviation of under-achievement of TSK for station (j, k)

d+
3jk deviation of over-achievement of TSK for station (j, k)

d−
4ihjk deviation of under-achievement of the positive zoning goal for tasks i, and h

d+
4ihjk deviation of over-achievement of the positive zoning goal for tasks i, and h

d−
5ihjk deviation of under-achievement of the negative zoning goal for tasks i, and h

d+
5ihjk deviation of over-achievement of the negative zoning goal for tasks i, and h
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