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storage and dissemination of such content, peer-to-peer solutions appear to be the natural
choice. However, a closer analysis shows that distributed hash tables (DHT) alone are not
enough: firstly, they do not maintain the original data structure needed to efficiently access
the comprising attributes, and secondly, they lead to high signaling traffic when the data

?ﬁﬁﬁogizces is short lived, such as in high mobility scenarios. In order to address these two problems
Content centric dissemination we propose a novel content dissemination architecture based on an overlay of space-based
DHT containers. Furthermore, we apply the proposed concept to realize a concrete application in
Intelligent transportation the field of intelligent transportation, and present the results of the performance evaluation
Service platform conducted with the system prototype.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

As wireless access becomes ubiquitous and peer mobility increases, the internet architecture faces many new challenges.
Emerging mobility scenarios often require disruption-tolerant behavior, novel opportunistic routing and node-by-node reli-
able transport, since the assumption of stable end-to-end connections is not true anymore. The future internet architecture
is currently developed in projects such as 4WARD [1], FIND-Postcards from the Edge [2], or Content Centric Networking
of the internet pioneer Van Jacobson [3] and enables content-centric instead of device-oriented information dissemination.
An essential requirement in this architecture is that intermediate nodes must be able to cache large amounts of data. The
technology for “storage in the net” has been efficiently addressed by peer-to-peer storage networks such as PAST [4,5],
OceanStore [6] and the cooperative file system CFS [7]. However, in case structured content, such as context data with tem-
poral and geo-location attributes needs to be efficiently stored, queried and acted-upon, a storage network that supports
mainly files renders unsuitable, since the information structure gets lost. A few P2P techniques such as the intentional nam-
ing system INS/Twine [8] or P-Grid [9] can maintain the content structure with a hierarchical DNS-like addressing. In [10]
the authors map a multidimensional keyword space originating from Linda tuples to a hash space and use DHT techniques
to retrieve the tuples. However, the costs for such solutions are high, since keeping a P2P entry for each data item causes a
large traffic overhead, especially when the data elements are mutable and short lived.

In this paper we address the network storage and distribution of structured content by proposing an architecture that
unifies the flexibility of the P2P approach with the query expressiveness and coordination support of the tuple space-based
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computing paradigm [11]. Supported by a geographical hash function, the addressing of the tuple spaces is content driven
and not related to the node identity.

In order to show the benefits from our architecture solution we describe an application that disseminates the content in
designated geographical areas. The required support for application-based routing and distributed coordination is offered by
a tuple-spaces technology called extended virtual shared memory (XVSM) [12,13].

Our approach has two advantages: firstly, it keeps the message traffic low on the DHT level and secondly, it allows
applications to directly manipulate the data entries of fine granularity stored within the space containers.

The rest of the paper is organized as follows. In Section 2 we briefly introduce the two constituent technologies of our
solution, that is, distributed hash tables and the space-based computing. In Section 3 we discuss the key features of the
proposed solution including addressing and lookup, replication, and handling of node arrivals and departures. A global API
that hides implementation aspects from the applications is presented as well. In Section 4 we show, how the proposed
architecture is applied to realize a distributed platform for intelligent transportation applications, and in Section 5 we
present message throughput and delay measurements. Finally, Section 6 contains concluding remarks.

2. Technologies

The proposed content storage and distribution platform is based on two constituent technologies, which we discuss
briefly in this section: the tuple spaces and the distributed hash tables.

2.1. Space-based computing

The idea of a shared data space was first created by David Gelernter in the 1980s [14]. He introduced a coordination
language called Linda which operates on an abstract computation environment called tuple space. In the tuple space ap-
proach, processes communicate with the other entities in the environment by writing data tuples into the space. Sharing
data via spaces [15] is not new; it originates from parallel processing and was later considered for distributed environments.
The processes interested in retrieving information from the space perform blocking read (Rd/In) operations specifying data
via a template. In case several tuples match the template of a data-retrieval operation, only one of them is selected non-
deterministically. The communication always takes place between the processes and the space. This way the sending process
does not need to know about the receiving process and there is no need for both processes to be connected at the same
time. The loose coupling between processes both in time and space reduces complexity in creating distributed applications
[16].

There are a lot of implementations that follow the concept of the tuple space and provide associative search for the
stored tuples, such as LighTS [17], JavaSpace [18], TSpaces [19], GigaSpace [20], Blitz [21]. We developed a space-based
architecture called XVSM (extensible virtual shared memory [12,13]), that generalizes the Linda tuples [22] and some later
extensions to one single concept of shared containers. A (data) entry in a shared container is a set of labeled values called
tags. The payload and meta-data relevant for coordination are differently tagged, allowing to distinguish between user data
(message body) and coordination data (message header). Similarly to the Linda model, containers can be accessed by the
operations read, take, and write. Each container has one or more coordination types [23] that define the exact semantics
of each operation. The different coordination types can be classified into implicit order, direct access and content matching.
Implicit order refers to e.g. FIFO and LIFO order. Using FIFO coordination corresponds to seeing the container as a queue
where take will always read and remove the latest written entry. Direct access allows selection of entries via their tags
directly, using relational operators [24] (e.g. select entries with a certain tag that has a value less than 100) or range
operators (e.g. select entries with a certain tag that has a value between 100 and 1000). Content matching provides support
for user defined match makers [17] for Linda, RDF, or XML querying facilities.

A shared data space is a collection of containers which can be addressed via URLs in the internet. A container is ex-
tensible in a sense that its behavior can be extended through “aspects” comparable to the “aspects” in object-oriented
programming languages [25] or to space-based programming extensions for aspects [26]. XSVM aspects are code fragments
that are executed, when an operation (e.g. read, write, etc.) is carried out on a container. Interception points for aspects are
set before or after the operation is executed, e.g. pre-read, post-write, etc. Aspects are used to build higher level logic such
as dedicated replication strategies.

2.2. Distributed hash tables

The underlying concept of scalable P2P networks such as Chord, Pastry or CAN is the distributed hash table (DHT). The
basic functions of a DHT are to store a data object and to efficiently retrieve that data object from any peer in the network.
For this purpose, a very large identifier space (e.g. all binary combinations of 128 bits) is defined and data objects and node
identifiers are mapped on it using a hash function. The design options for creating the key for a data object include hashing
the (string) name of the object, its location (URI), or the content itself. The storage/publishing function publish(key, value) is
not affected by the selected alternative. A DHT offers basic self-organization functions such as adapting the topology when
a node arrives or leaves, as well as a better reliability due to mechanisms to replicate DHT entries. The lookup complexity
is for most DHTs O (log N) where N is the number of nodes. Among the various DHT algorithms, Pastry [27] with its
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implementation FreePastry deserves a more detailed discussion. In FreePastry the identifiers are selected from a 128-bit ID
circular space. The routing of messages between nodes is based on maximum prefix matching. The routing table of a node
defines its rows, such that the ith row contains those nodes that have a common prefix of length i with the current node ID.
The leaf set is also a part of the routing table and contains nodes with node ID numerically close to the current node ID.

DHT entries are replicated in Pastry using a subset of the leaf set nodes. The Pastry replication mechanism guarantees
that the number of live replicas r remains invariant under node churn conditions. During a lookup operation, the routing
protocol conducts the search for the node with the closest ID to the key K. It is however possible that another node is
found, namely a node that is located on the routing path and that holds a replica of K. Therefore, the lookup(k) operation
might not deliver deterministically the same replica.

3. Architecture and design considerations
3.1. Naming and addressing

As mentioned before, the proposed system aims to keep the structure of information entities, for instance by maintaining
grouping and ordering of messages according to certain criteria. This is achieved by putting the information entities in tuple
space containers and, at retrieval time, applying filter and ordering selectors. Thus, the addressable entities at the DHT
level are not individual content objects, but space containers. This design decision accounts for the requirement to handle
structured and ephemeral content in an efficient way. The given addressing scheme for XVSM space containers is a URI with
the format “tcpjava://mycomputer.mydomain.com:1234/ContainerName”. If ContainerName is unique on that host, a remote
application can directly address the container using the DNS. However, the fixed identifier-locator (IP address) binding leads
to known problems in case the IP address changes (due to mobility of the node), the node fails or if containers are moved
to other nodes to better distribute the load.

In order to achieve identifier-locator separation we proceed as follows: we assume that the key-value pair entry in
DHT looks like: key = H(containerName), value = containerReferenceURI. The value stored under containerReferenceURI has the
format “tcpjava://localhost:1234/randID”, where localhost is a place holder for the IP address, and randID uniquely identifies
the container. As we will see in Section 3.3, the container replicas maintained on other nodes must have the same randID.

When a remote application client requests the value in H(containerName) using the DHT overlay, the destination node
of that lookup replaces “localhost” in the containerReferenceURI with its own IP address, before returning to the requesting
client.

3.2. Location aware hash function

In FreePastry, data set placement and routing is done by defining and slicing a 128-bit ID space. A hash function is used
to map nodes and entries to these IDs. The default implementation is to utilize the well-known SHA1 hash function to
encode the keys of an entry and the random number which is by default assigned to new node to obtain the necessary IDs.

We focus on spatial-temporal content that, in addition to being a time-stamped event, contains a geo-reference to a
point, a pair of points or a circular zone. A point is defined by a pair of WGS84 coordinates. In some services it is required
that a piece of content is routed to a node responsible for those coordinates.

To realize this kind of functionality, a hash function that takes geographical location of a point into account is superior to
the random behavior of standard SHA1 hash function. In order to build the location-aware-key, an identifier called Cname is
added to the coordinate pair, because the coordinates alone cannot qualify collocated objects. This concept leads to a hash
function signature similarly to [28]: H(x, y, Cname), where x is the concatenation of 8 longitude digits 01,02,...,08, y is
the concatenation of the first eight latitude digits a1, a2,...,a8 and Cname is the identifier mentioned above.

3.3. Resilience considerations

The spectrum of fault tolerance design solutions in distributed systems is large and depends of course on the require-
ments and the solution costs. A full backup of services following a node failure does not solve the problem if those services
are location aware, because, in general, the service functionality cannot be delivered by another node with the same quality.
Therefore, by using replication techniques we want to avoid at least the loss of data after a node failure.

At the overlay level, the replication of DHT entries is a common functionality. The Pastry replication algorithm is based on
the replication of an object addressed by a key K on (invariant) r nodes that are alive and nearest to key K. Similarly to the
PAST storage system built on top of Pastry [27], replicas have to be managed in order to fulfill the invariant rule mentioned
above. Our contribution is to connect and synchronize two mechanisms: the replication of DHT entries (DHT replicas) and
the replication of shared space containers (container replicas). In Section 3.1 it was stated that the DHT entries were made
of container URIs that look like: key = H(containerName), value = containerReferenceURI. The Pastry routing protocol makes
sure that an alive replica is found. However, finding the DHT entry is not enough, its value has also to point to the correct
container replica. Pastry can always return the so-called replicaSet for a certain key, that is a set of nodes that can be used
to store replicas of that key. In case a node fails, the lost DHT entries are replicated in order to keep the number of copies
for each entry equal to r. Specifically, in case the number of replicas is less than r, a DHT entry replica is automatically
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created by Pastry on those nodes from the set replicaSet(K) that have no replica. In addition to the DHT mechanism, the
container corresponding to the newly created replica has to be copied as well on that same node.

Containers are active components in which the entries change following operations such as write, take, destroy or shift.
Therefore, the container replicas have to be updated, although the DHT pointers remain unchanged. The design of the
interactions related to a WRITE operation has to consider the replication mechanisms specific to the DHT implementation -
in our case - to Pastry. In the normal case the DHT operation lookup(K) will access the root node, but if the path to
destination hits first a replica node, it is this node that is returned. Therefore, in this system we cannot use a single master
replication scheme. We propose to use a delegation pattern as shown in Fig. 1. The first interaction lookup(K) will return
the full address of a container replica (or the root). The requesting peer proceeds with a direct container write() operation,
followed by a replication aspect program that calls replicaSet() in order to obtain the other replica nodes, and repeats the
write operation at the respective containers. The first accessed container returns the final result of the replication operation.

3.4. Handling join and leave requests

If a node holding a key K is non-responsive for a certain period of time, e.g. 10 seconds, then Pastry triggers an ad-
justment of the leaf set entries in all affected nodes. Each node removes the failed node from the leaf set and includes the
live node with the closest nodeld. The responsibility for the key K moves from the failed node to another near node that,
however, has first to acquire a DHT replica of K. As we have seen in the previous section, a new DHT replica of K triggers
the creation of new container replica on the same node.

If a new node joins the system, this node is included in the leaf sets of L neighbors, whereas other nodes are removed
from those leaf sets. If a key K points to one of these removed nodes, then only r — 1 replicas for K can be accessed, and
the new node has to acquire a replica for K as well. The overall effect of a “join” is therefore moving the container from
the node dropped from the leaf set to the new node.

3.5. Distributed container application interface

The mechanisms described above enable us to define a powerful application interface that on the one side hides the node
lookup in the network, the replication management of DHT entries and of containers. On the other side the tuple-spaces
paradigm offers the features described in Section 2.1, it supports advanced queries of data items in a collection, allows the
modeling of queues and stacks, supports transactions, etc.

For application programmers the API below is a compact, elegant abstraction that needs only the application specific
container name for addressing it network-wide. The main methods are given below, whereas the whole framework handles
in addition transactions and creation of aspect programs (see [24] for more examples).

e globalCreate(LocationAwareKey key): publishes the name of the used container. Every time Pastry creates a replica entry
on a node, a replica container is created as well. The process consists of three steps: 1) a DHT publish method call with
the name of the container is executed; 2) Pastry forwards the value to those peers where the original entry and the
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replica of it should be placed; 3) containers with the provided name are created on those peers. Additionally, replication
aspects are installed.

e globalRead(LocationAwareKey key, Selector... sel): The client addresses the DHT first to lookup for the container URI. The re-
turned value is then used to address the container directly. The selector allows ordering and filtering of tuples/container
entries for reading.

e globalWrite(LocationAwareKey key, Entry... entries)

e globalTake (LocationAwareKey key, Selector... sel)

e globalDestroy(LocationAwareKey key)

o globalShift(LocationAwareKey key, Selector... sel)

For each of these four content modifying operations, first a DHT lookup is performed in order to retrieve the container
reference. Using this, one of the replica containers can be manipulated within a transaction. By means of the installed
replication aspects, the updates done on that container are propagated to the other replica containers automatically.

4. Distributed platform for intelligent transportation applications

We evaluate the benefits of the proposed architecture in an intelligent transportation (ITS) scenario, where fast moving
vehicles communicate with a fixed, geographically distributed infrastructure, as illustrated in Fig. 2.

The communication between vehicles and infrastructure occurs via the so-called road side units (RSUs), which are in-
stalled along the roads. RSUs nodes are interconnected in a mesh wired broadband network and communicate also with
vehicles situated in their communication range using wireless short range communication protocols [29]. The exchange of
information between vehicles and RSUs is bidirectional: in one type of ITS applications vehicles provide sensor data such
as humidity, road temperature, speed, brake status, etc.; other ITS applications distribute relevant traffic events from the
road operator towards certain RSUs that further broadcast them to vehicles in the area. These events contain information
on incidents, road works, speed limits, etc. In both cases the content is geo-located and its relevance in space and time is
limited to a certain region, moving direction and time period.

There has been substantial research in Europe, US and Japan in the field of cooperative systems for intelligent trans-
portation, mainly devoted to wireless car2car communication and routing methods. It has been shown that, by adding
infrastructure nodes (infostations [30], beacons, relay nodes, etc.) the delivery ratio [31] is improved and the path length is
reduced down to one hop.

Little attention has been paid to the role of infrastructure nodes in intelligent dissemination of content. The closest
related project to our approach, COOPERS, is part of e-Safety EU initiative and focusses on infrastructure to vehicle com-
munications. Traffic, weather and safety messages are distributed from a traffic control center to the road side units. With
the distributed architecture presented in Section 3 we can do better in the sense of building a self-organizing, scalable and
resilient system.

4.1. Service architecture

A whole class of distributed applications that disseminate spatial-temporal content can be realized using our architecture
with application components, space containers and a powerful notification framework. In this architecture the content is not
sent directly to applications, but to input containers that in the simplest case behave like queues. One or several service
applications are notified to retrieve the content, process it, then drop the results into other containers. For mobile nodes,
the capability to discover all active services running on one node is important particularly when a service is deployed only
on certain nodes. Therefore, the system provides a special container with the role of a service registry. The running services
are published in the registry and from there they are announced continuously over a wireless control channel. In Fig. 3 we
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illustrate this architecture with two services, namely the message dissemination service we will discuss in the next section
and an interactive service that is invoked by requests from mobile nodes (vehicles).

With the geographical hashing scheme described in Section 3.2, any content created by some node or injected in the
system can easily be routed to a geographically specified region. In case we want to alert the drivers before they arrive to
the event location, the geographical routing scheme above is not sufficient: the overlay peers have to be put in relationship
with the road network and with the navigation on it. This is achieved by a road network model that contains nodes, links,
turning restrictions and the RSU peers with their positions. The network structure is available in each peer node and is used
for navigation, shortest paths calculations, and for the advanced routing applications mentioned above.

4.2. Dissemination algorithm

The goal of an intelligent dissemination of traffic and safety messages is to deliver them only at those road side unit
nodes for which the event is relevant, for instance only for the vehicles located upstream of an accident. Each event type
may have a different dissemination rule, i.e. an accident or incident event message should be disseminated at least 2 km
ahead of the accident location, and within 1 minute time, whereas a “speed limit” message from the traffic control center
should reach the affected vehicles within 10 seconds.

This service must be available in each RSU node and must calculate for each incoming content message the set of RSUs
on which the content shall be replicated. (Note, that replication in this case is completely different from the low-level
mechanism discussed to achieve resilience.) Once arrived at the destination RSUs, the message is broadcast to the vehicles
passing by.

The algorithm uses navigation along the road network graph N(V, A), where N is the set of nodes and A is the set
of directed links (road segments). The content message is mostly associated with “start” and “end” geographical locations
given by WGS84 coordinates. Referring to Fig. 4, we have first to find the link (n1,n2) on which the event “starts” at a
certain location. Such an association requires in general case to apply a map matching procedure. Having identified the link
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(n1,ny) and given the dissemination distance D, we proceed as follows (see Fig. 4): the procedure is basically a labeling
of the network nodes from nj via its incoming arcs, except the arc (ny,ny). The labeling occurs if the distance of both end
nodes of an arc is smaller than D. In this case all the RSUs on that arc are included in the resulting dissemination set. The
border case is, when for a certain arc the distance to one end node is less than D, but to the other end node, it is larger
than D. In this case we have to check the RSU list on that arc one-by-one and include those closer than D. The algorithm
ends when no edge can be labeled any more. In order to avoid cycles, we make sure that no edge contains the node n,.

Here it has to be mentioned that if we try to solve the problem using shortest paths to node ni, the solution will contain
a tree. In Fig. 3 two paths exist from a node n3 towards the destination node ni. If we apply shortest paths, only one path
is selected and labeled. This solution is however wrong, because cars follow individual decisions and would use both paths,
therefore ALL the RSUs on these paths have to be included in the resulting dissemination set.

5. Performance analysis

The system has been implemented and deployed on eight nodes in our lab. Our partner, the Austrian highway operator
ASFINAG, developed in the COOPERS project an infrastructure-to-vehicle communication solution in which geo-located traffic
and safety messages (coded in a markup format called TPEG-ML) are distributed to road side units situated in Tyrol. As
mentioned before, the COOPERS system disseminates the messages from a central traffic control center (TCC) directly to the
roadside units.

As the nodes (peers) in our test bed have identifiers in the modified hash space corresponding to coordinates on the
highways A12 and A13 in Tyrol, the TPEG messages created by the Asfinag Traffic Control Center can be injected and
processed on our system as well.

An evaluation of such a system can be performed along the following criteria:

e classical performance indicators such as processing delay and message throughput,
o self-organization feature or management overhead when deploying additional nodes,
e ability to balance the data traffic load,

e data integrity during temporary node failures,

e scalability.

The load sharing aspects are currently studied and mechanisms are in place to distribute service requests on less loaded
peers. The self-organization feature is already provided by the P2P underlying layer, but has to be enhanced at the space
and application layer. Thus, when a new node joins the network, the road network data structure is updated and replicated
to all the nodes.

In the following we look in more detail at the delay and throughput measurements. The messages generated in real
time by the traffic control center have been stored in xml files. In order to generate processing load, these messages have
been injected at once in the system via several peers. After being parsed, and transformed into an internal tuple format,
the messages were time-stamped. After the dissemination and their dispatching to the final destination the messages were
time-stamped again, so that the time spent in the system could be measured.

In Fig. 5 1000 messages have been entered into the system creating over 2500 traces in the destination containers
(because the dissemination process replicates most of them). Looking at the delay as a function of the release time into the
system, we observe at the beginning the effect of queue building. The “patterns” in the figure are cause by the aggregation
of delays on different RSUs: some RSUs are slower or have a larger processing load, others are much faster.

The delay histogram in Fig. 6 displays a long tail, which is a result of the aggregation of fast and slow nodes, having
different processing loads. A future task in the project will be to explore ways to better share the load between nodes, in
particular for those applications that are not constrained to run on a certain node.

As part of the experiments, we measured the total message throughput by counting all the messages that arrive in the
destination containers in all nodes, in the same second. (See Fig. 7.)

In the first experiments the message throughput in the system has been limited, against the expectations, by the “route
to the nearest node” function. This function dispatches a message entering the system to the node closest with respect to
the message coordinates. The function uses heavily the DHT substrate and was meant to shorten the average paths to the
RSUs on which the message is to be disseminated. It turned out that this function requires 180 ms on average per message
and limits in this way the throughput drastically.

Based on this observation we can discuss the scalability of the proposed architecture in comparison to a plain DHT
approach. For the latter, the theoretical lookup complexity is O(log N) where N is the number of nodes. Since DHT lookup
operations are expensive, the more messages are requested at once from a container, the more efficient is the container
based architecture. The reason for this is the fact that, once the container is found via DHT, its messages can be accessed
directly via one TCP call, see [32] for more details.

The performance absolute numbers are of course modest. This is due primarily to the bottleneck function mentioned
above, but also to the java implementation of all components and the low performance of the Pentium 4 machines used.
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6. Concluding remarks

In this work we present a content distribution system that combines the self-organization features of distributed hash
tables with the powerful processing capabilities of tuple spaces. We consider in particular applications in which the content
is volatile and geo-tagged.

Most DHTs have a few known drawbacks: similarity and locality of data (e.g. Meier vs. Meyer) cannot be easily modeled.
Neither can lookups be performed, without specifying exactly the searched name. We present a system approach that largely
compensates for these disadvantages. Using shared space containers, we are able to handle similarity and locality in storage
and search processes, and apply more complex queries to Linda tuples. In general, the manipulation of data in a container
is efficient, since it does not change any DHT entries that would create DHT signaling traffic.

The main contributions of this work include:
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e a data centric routing mechanism that allows to store and process a message at the geographically closest node. This
operation is however expensive in terms of processing delay;

e a simple solution for the integrated replication of both DHT entries and containers, a solution which however exploits
the Pastry DHT replication mechanism;

e a service architecture and an example dissemination service that illustrates the use of such a system in intelligent
transportation scenarios.

Further research will be conducted towards better efficiency through load sharing mechanisms between peers and to-
wards advanced application routing algorithms to support the mobility and the temporary connectivity of content sources
(the vehicles in our scenario).
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