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1. Introduction

Creating shareholder value is commonly considered the para-
mount business goal (Young and O’Byrne, 2001) and requires an
integrated approach to performance and risk management
(cf. Ritchie and Brindley, 2007; Oehmen et al., 2009). Value-based
management (VBM) provides a corresponding framework utiliz-
ing value driver trees and risk-adjusted performance metrics as
major concepts for performance and risk management (Kaplan
and Atkinson, 1998). Value driver trees drill down a top-level
performance metric into operational levers for performance
management (Rappaport, 1998). Risk implications are considered
within the performance metrics via risk-adjusted cost of capital
(Young and O’Byrne, 2001). From an operations research perspec-
tive, there are two major drawbacks of this common VBM
approach. First, value driver trees are only explanatory frame-
works and do not provide decision support. Second, risk implica-
tions are only covered indirectly omitting scenario-based
information to derive robust plans.

Conceptual frameworks for value-based performance (cf.
Walters, 1999; Lambert and Pohlen, 2001) and risk management
(cf. Cavinato, 2004; Oehmen et al., 2009) are widely discussed in
the supply chain context. Lainez et al. (2009) and Hahn and Kuhn
(2011) provide decision models for value-based performance
optimization at the long-term and mid-term level of supply chain
management. However, the authors cover risk implications only
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indirectly via risk-adjusted cost of capital and the management of
supplier-customer relationships. Therefore, the aim of this paper
is to develop a framework for integrated value-based perfor-
mance and risk optimization with a primary focus on the mid-
term level. Robust optimization methods are applied to account
for the risk-averse attitude of corporate decision-makers and to
immunize financial performance against the impact of imperfect
information (cf. Mulvey et al., 1995; Bai et al., 1997).

The remainder of this paper is structured as follows: Section 2
provides a literature review on decision-oriented approaches to
financial performance and risk management in supply chains as well
as robust optimization methods. The conceptual framework for
value-based performance and risk optimization is derived in Section
3. In Section 4, a corresponding decision model for the supply chain
context is presented. Multiple aspects of robustness and general
implications of the framework are highlighted in Section 5 using a
case-oriented example. Section 6 concludes the paper with a sum-
mary of the findings and an outlook for further research.

2. Literature review

Recent papers show increasing interest in decision-oriented
approaches to financial performance and risk management. Guillen
et al. (2007) optimize change in equity as a financial performance
metric in their approach for integrated supply chain planning
and scheduling in the chemical industry. Comelli et al. (2008)
combine supply chain master planning with activity-based costing
for aggregated supply chain processes. Bertel et al. (2008) max-
imize average cash position in their decision model for operat-
ional supply chain planning based on a flow shop scheduling
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formulation. Hahn and Kuhn (2011) develop a deterministic
decision framework to optimize Economic Value Added (EVA) as
a value-based performance metric at the mid-term level of sales
and operations planning (S&OP). As opposed to the three afore-
mentioned papers, the authors consider risk implications at least
indirectly via risk-adjusted cost of capital in the calculation of EVA.

OR-based approaches to risk management mainly focus on the
physical domain of supply chain management and omit financial
implications (cf. Tang, 2006). Pongsakdi et al. (2006) and You et al.
(2009) provide two-stage stochastic programming approaches to
risk management in chemical supply chains. Pongsakdi et al.
(2006) investigate a case study in refinery operations planning
and utilize risk curves as well as the sample average approxima-
tion method to reduce risk impact. You et al. (2009) evaluate
different risk metrics and their implications for global supply
chain planning. Multi-stage frameworks for risk management
are provided in Goh et al. (2007) and Sodhi and Tang (2009).
However, only Sodhi and Tang (2009) consider material and
financial flows simultaneously in their approach to supply chain
risk management motivated by asset-liability management.

Mulvey et al. (1995) introduce robust optimization as a general-
ization of stochastic programming focusing on optimality and
feasibility of the solution. An alternative approach to robust
optimization is provided in Kouvelis et al. (1992) mainly focusing
on the worst-case scenario. As a consequence, their approach omits
scenario probabilities and does not utilize scenario-specific control
variables in the decision model (Scholl, 2001). Properties of risk-
averse utility functions in robust optimization are examined in Bai
et al. (1997). Scholl (2001) develops a generalized framework for
robust planning and optimization. Bayraksan and Morton (2006),
Kaut and Wallace (2007), and Zenios (2007) investigate the impact
of scenario generation methods on the robustness of results. Whilst
Zenios (2007) focuses on statistical quality criteria to evaluate the
generated scenario set, Bayraksan and Morton (2006) and Kaut and
Wallace (2007) consider decision quality to decide whether the
approach leads to superior decisions or not.

A large body of literature deals with stochastic production
and supply chain planning to cover different sources of risk
(cf. Wang and Liang, 2005; Mula et al., 2006). Robust optimization
methods according to the aforementioned concepts are applied to
problems in supply chain master planning at the mid-term level
in Yu and Li (2000) and Leung et al. (2007). Eppen et al. (1989),
Bok et al. (1998), and Aghezzaf (2005) investigate robust appro-
aches to capacity expansion and facility location planning at the
long-term level.
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In summary, stochastic programming and robust optimization
methods are prevalent in physical supply chain planning as well as
financial performance and risk management. However, current
decision frameworks only consider selected aspects and do not
provide a comprehensive robust approach to value-based perfor-
mance and risk optimization. Therefore, we extend the value-based
optimization approach of Hahn and Kuhn (2011) towards a robust
framework for integrated performance and risk management.
Implications for scenario generation are considered to account for
robustness from both the data and the decision model perspective.

3. Conceptual approach

3.1. Value-based performance and risk management

Business creates shareholder value if earnings exceed total costs
of invested capital (Rappaport, 1998). We utilize the EVA concept
as a prevalent metric of value-based performance at the mid-term
level (cf. Young and O’Byrne, 2001). In (1), EVA in period ¢t is
calculated from net operating profit after tax NOPAT in period t
minus total costs of invested capital in net operating assets NOA at
the end of the previous period t—1 considering weighted average
cost of capital i"““ (Kaplan and Atkinson, 1998).

EVA; = NOPAT,—NOA,_; - i"* 1)

Since shareholder value creation is a composite function of
multiple interdependent factors, value driver trees are common
frameworks to illustrate causal relationships between operational
levers and a value-based performance indicator such as EVA
(Rappaport, 1998). Walters (1999) identifies three relevant opera-
tional value drivers from a mid-term planning perspective.
Customer retention and sales growth as well as synergies from
the integration with supply chain partners increase operating
profit margin. Improved capacity management drives cost effi-
ciency in operations and enhances asset utilization. Working
capital management shortens the cash conversion cycle and
increases operational cash flow.

Although an integrated approach to performance and risk
management is required to increase financial performance holisti-
cally (cf. Stulz, 1996), the aforementioned frameworks for value-
based performance management consider risk impact indirectly via
risk-adjusted cost of capital. However, a direct approach to risk
management is recommended to consider comprehensive scenario-
based information instead of the expected value of the distribution.
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Fig. 1. Value-based performance and risk drivers.
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To avoid misinterpretations regarding risk considerations in the cost
of capital (cf. Young and O’Byrne, 2001), we assume an externally
predefined hurdle rate in the following.

There are various approaches to describe and classify risks in
supply chain management (cf. Waters, 2007). However, two
general types of risk can be distinguished according to Tang
(2006): disruption risks cover natural and man-made disasters
such as floods or major economic crises; operational risks relate to
the uncertainty of future events in the ordinary course of busi-
ness. Due to the focus of this paper on mid-term S&OP, we cover
operational risks and integrate corresponding sources of risk into
the EVA-based framework for value-based planning and manage-
ment as described in Fig. 1.

Risk management approaches can be classified into four
categories (Mullai, 2008): risk avoidance aims at eliminating the
source of risk. Risk mitigation reduces the probability and/or the
business impact of potential risks (Oehmen et al., 2009). Coopera-
tion contracts and insurances can be used for risk sharing with
business partners or other parties (Ritchie and Brindley, 2007).
Risk adoption is a passive approach and does not pursue any
action (Waters, 2007). OR-based approaches to risk management
such as stochastic programming and robust optimization antici-
pate risks and develop contingency plans to mitigate risk impact
(Scholl, 2001).

3.2. Integrated performance and risk optimization

Decision theory commonly resorts to variance-based (‘sym-
metric’) measures to quantify the variability of possible outcomes
in both an upward and downward directions (March and Shapira,
1987). In contrast, corporate risk management takes a more
managerial perspective to assess risk focusing on ‘asymmetric’
downside risk (March and Shapira, 1987; Stulz, 1996).
A generalized definition of downside risk is given in Fishburn
(1977) with the concept of lower partial moments (LPM):

LPM(Q,q) =" _pr; - max{0; Q—Z} )

ses

S is the set of discrete scenarios s with the probabilities pr. Q
denotes the aspiration level for the value of the objective function
Z in scenario s. q covers the level of risk aversion deriving
expected downside risk for g=1. Higher levels of risk aversion
can be implemented with g > 1. For g=0, the LPM results in the
probabilistic definition of risk (Barbaro and Bagajewicz, 2004) and
represents a risk-seeking decision-maker (Nawrocki, 1999).

Since the EVA concept contains an internal benchmark of 0,
i.e.,, that total costs of capital are covered, a decision-maker
balances the upside potential of creating economic value
(EVA>0) and the downside risk of destroying economic value
(EVA < 0). We define downside risk (DR) as the first-order lower
partial moment LPM(0,1) with the aspiration level 0; upside
potential (UP) is derived as the complementary upper partial
moment. Utilizing the risk preference parameter o € (0; 1], the
objective function in (3) covers the full range the risk preferences
from risk-averse (6 — 0) to risk-seeking (0 =1).

() =5 - UP—(1-5) - DR 3)

For 0 = 0.5, the objective function equates to the risk-neutral
expected value criterion since upside potential and downside risk
complement one another to the expected value of the entire
distribution.

Robust optimization assumes a risk-averse decision-maker
(Scholl, 2001) and thus an objective function only covering the
spectrum of risk-averse preferences is sufficient. Applying the
concepts of upside potential and downside risk, the resulting

objective function is

&'(y)=7 . UP—DR=1y - (UP-DR)—(1—7) - DR
=y-EV—(1-y)-DR )

with y e (0;1]. UP becomes obsolete since upside potential and
downside risk complement one another to the expected value
(EV). y =1 results in the risk-neutral expected value criterion and
y— 0 represents a highly risk-averse preference. In contrast to the
objective function in (3), (4) can be implemented without binary
auxiliary variables (cf. Section 4.1).

3.3. Robust optimization methods

Robust optimization represents a generalization of stochastic
programming explicitly considering the risk-averse preference of
the decision-maker and thus aims at deriving plans that are
sufficiently insensitive to the influence of imperfect information
(Scholl, 2001). In our approach, we build on the fundamental
robustness concepts developed in Mulvey et al. (1995) and apply
two-stage stochastic programming as described in Birge and
Louveaux (1997). Thus, we utilize scenario-independent struc-
tural variables (‘here-and-now’ decisions) and scenario-specific
control variables (‘wait-and-see’ decisions) in the optimization
model (Birge and Louveaux, 1997).

Approaches to robust optimization distinguish two conflicting
criteria of robustness (cf. Mulvey et al., 1995): solutions are
considered model robust if they are ‘almost’ feasible for each
scenario and solution robust if they are ‘close’ to optimal for each
scenario. Furthermore, we focus on objective robustness to ensure
a certain aspiration level is attained in ‘almost’ every scenario
(Scholl, 2001). Probabilistic constraints and control variables are
methods to quantify and manage model robustness but could lead
to partially infeasible solutions for individual scenarios (Birge and
Louveaux, 1997). Therefore, we apply a completely model robust
‘fat solution’ design to obtain decisive and feasible solutions for
each scenario although this implies a high level of risk aversion
(Kall and Wallace, 1994).

The decision-maker balances solution and objective robust-
ness depending on the risk preference parameter in the objective
function. Utilizing the objective function in (4), we obtain relative
solution robustness for a risk-neutral decision-maker with y=1
(Scholl, 2001) corresponding to the mean-value approach typi-
cally applied in stochastic programming (cf. Birge and Louveaux,
1997). For y—0, a highly risk-averse decision-maker mainly
focuses on objective robustness with respect to the aspiration
level implemented in the downside risk measure. Furthermore,
we calculate the expected value of perfect information (EVPI) to
quantify the impact of uncertainty. The EVPI equals the maximum
amount a decision-maker is willing to pay for perfect information
and is derived as the difference between the objective value of
the here-and-now and the wait-and-see approach (Birge and
Louveaux, 1997).

Finally, we consider information robustness and require
results to be sufficiently independent of the level of information
applied in the decision model (Scholl, 2001). The level of informa-
tion is mainly affected by the scenario generation method
determining the size of the discrete scenario set (Birge and
Louveaux, 1997; Di Domenica et al., 2007). Since we aim at
limiting the number of contingency plans to a manageable size,
we determine a relatively information robust size for the scenario
set. According to Bayraksan and Morton (2006) and Kaut and
Wallace (2007), we evaluate information robustness with respect
to resulting decision quality utilizing the other robustness cri-
teria. Thus, we examine the ex ante influence of uncertainty and
the ex post performance impact in the event of deviating realized
scenarios.
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4. Decision model

In the following, we derive a decision model for value-based
performance and risk optimization. A make-to-stock supply chain in
the consumer goods industry with single-stage production and
constrained capacities is considered. Material and financial flows of
mid-term S&OP are optimized simultaneously for value-based per-
formance in terms of EVA. Robust optimization methods are applied
to manage risk impact due to demand uncertainty. Demand informa-
tion is provided as a discrete scenario set with respective
probabilities.

With respect to the physical domain, the model calculates
sales quantities and the amount of marketing activities. Procure-
ment, production, and transportation as well as storage quantities
are also derived considering production and storage capacity.
Production capacity can be extended using overtime provided by
subcontractors. Sales prices, cost prices, and cost unit rates are
fixed due to long-term contracts. Regarding the financial domain,
short-term financial investments and short-term borrowing are
covered with a one-period horizon considering interest rates and
a given bank line of credit. Open items from accounts receivable
and accounts payable have a payment term of one period but
factoring and early payment deducting a cash discount can be
used to manage liquidity.

Inventory levels and the amount of overtime are modeled as
first-stage variables since mid-term capacity decisions have to be
determined before the actual scenario is realized due to the time
delay (‘here-and-now’ decisions). All other physical decisions and
the financial decisions can be postponed and thus are modeled as
scenario-specific ‘wait-and-see’ variables of the second stage. In a
hierarchical planning framework detailed decisions on procure-
ment, distribution, and sales quantities as well as financial
positions are determined within short-term planning below the
level of S&OP (Fleischmann et al., 2008). The following notation is
used:

Sets and indices

peF,RP final products, raw materials, all products
and materials
lelE [0 A procurement locations, operations

locations, sales locations
valid product-location combinations for
procurement, operations, sales

(p.]) e PLE,PL°P P[A

(LjHeTC transportation connections between
locations

(p,(Lj)) e PC valid product-transportation connection
combinations

(p,r) e BOM output-input combinations in the bill of
materials

t periods

seS scenarios

Decision variables
Lok inventory of product p at operations
location [ at the end of period t

Xpist production quantity of product p at
operations location I for scenario s in
period t

Yoijst transportation quantity of product p from
location [ to location j for scenario s in
period t

O overtime at operations location [ in period t

Mpise amount of marketing activities for

product p at sales location [ for scenario s
in period t

FIst,ARst,Cst, DSst, APt

AR

St

AP,

st

Auxiliary variables
EVAs

Us

D

s

TCM¢, NS, VCOst

CAst

IC,
OCFs;,OMs,FMs;

Parameters
0,7

prg

T

z

ihr

fa

fc
fd,cd

Vp:€p
cX;,Cl;,Co;

Ui

cmy
kxp,kip, ky,

Lpr

hE,hop
capX;,capl;
OlTlaX

dplst

n
Mmax

DsmaX

ecy
if’ , l'rDS

FI° AR,C0,DS° AP°

bigM

position in financial investments,
accounts receivable, cash, short-term
debts, accounts payable for scenario s at
the end of period t

amount of accounts receivable for
factoring for scenario s in period t
amount of accounts payable for early
payment for scenario s in period t

economic value added for scenario s
positive fraction of EVA for scenario s
negative fraction of EVA for scenario s
binary auxiliary variable for scenario s
total contribution margin, net sales,
variable costs of operations for scenario s
in period t

net operating current assets for scenario s
at the end of period t

change in inventory in period ¢t

cash flow from operations, open items
management, financial investment
management for scenario s in period t

risk preference parameters

probability of scenario s

planning horizon

tax rate

hurdle rate

average balance of net operating fixed
assets

fixed costs per period

factoring discount rate, cash discount
rate

sales price, cost price of product p

unit cost of production, storage, overtime
at operations location [

unit cost of transportation from location
[toj

unit cost of marketing for product p
production, storage, transportation
capacity need per unit of product p
direct demand coefficient of raw material
r for final product p

lead time coefficient for procurement,
production

production, storage capacity at
operations location [

maximum overtime expressed as a
fraction of standard capacity

demand for product p at location [ for
scenario s in period t

coefficient of marketing effectiveness
maximum demand extension expressed
as a fraction of normal demand

bank line of credit

exogenous cash flow in period t
interest rate for financial investments,
short-term debts in period t

initial position in financial investments,
accounts receivable, cash, short-term
debts, accounts payable

big number
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The supply chain consists of external suppliers (LF), internal
operations locations for production and storage (L°P), and sales
markets (L*). Raw materials R are turned into final products F. PLE,
PL®P, and PI? contain all valid product-location combinations for
procurement, operations, and sales. PC denotes the set of all valid
product-transportation connection combinations within the sup-
ply chain. The set of valid output-input combinations is captured
in the bill of materials BOM. S denotes the set of scenarios s. t
captures all time periods in the scope of the current planning run
within a rolling horizons approach.

4.1. Objective function
In the following, we implement the two alternative robust

objective functions developed in Section 3.2. The first concept in
(3) results in

max - pro-Us —(1-6)-> pr - Ds (5)
seS seS

upside potential downside risk

with U and D covering the positive and the negative fractions of
EVA for scenario s to calculate upside potential and downside risk.
pr denotes the probability of scenario s within the discrete set of
scenarios S.

EVA;—Us+Ds; =0 VseS (6)
U;—bigM - 4s <0 VseS 7
Ds—bigM - (1-25) <0 VseS (8)
Us,Ds>0; Ase{0;1} VseS 9)

Egs. (6) to (8) are required to calculate the positive and the
negative fractions of EVA. The binary variable A for scenario s
ensures that either U or D takes a positive value for scenario s as
defined in (9). bigM is an auxiliary parameter and denotes a big
number. Besides (6)-(9), no further constraints are required to
implement the robust optimization approach in this alternative.

Alternatively, the second concept introduced in (4) with the
restriction on risk-averse preferences can be implemented as

max y-» pry-EVA—(1-y)- > pr, - Ds (10)
seS seS

EVA;+Ds>0 VseS an

D;>0 vseS (12)

with D as the negative fraction of EVA for scenario s. D is
determined in (11) and restricted to the non-negative domain in
(12). Besides (11)-(12), no further constraints are required for the
robust approach in this alternative.

EVA for scenario s is calculated as net operating profit after tax
(NOPAT) minus the capital charge for the planning period in (13).
NOPAT is derived from total contribution margin TCM for scenario
s in period t and fixed costs fc considering tax rate z. The capital
charge results from the invested capital in net operating assets
and the hurdle rate i". Invested capital corresponds to net
operating assets consisting of fixed assets fa and current net
assets CA for scenario s at the end of the previous period t—1.
Fixed costs fc and fixed assets fa cannot be influenced at the mid-
term level and thus are parameters of the decision model.

T T

EVA,— <Z(TCM5[—fc> ((1-2)= > (fa+CAg 1) i’"> =0
t=1 =1

VseS (13)

Total contribution margin TCM for scenario s in period t is
derived in (14) from net sales NS and variable costs of operations

VCO considering change in inventory IC in period t. In (15), net
operating current assets CA for scenario s at the end of period ¢t
cover inventory I of product p at operations location I evaluated
with the cost price e of product p, accounts receivable AR, and
cash position C. Accounts payable AP are deducted since they are
non-interest-bearing debt capital (Kaplan and Atkinson, 1998).

TCM_;{—(NSSI—VCOS[-FICt):O VSES; t=1...T (14)

CAs—| > I e+ARs+Ce—APs | =0
(p.) e PLP

vseS; t=0...T (15)

Net sales NS for scenario s in period t are covered in (16) as the
difference between sales revenues and the costs for marketing
activities. Sales revenues result from transportation quantities Y of
product p delivered to sales location [ for scenario s in period t and
sales price v of product p. M depicts the amount of marketing
activities for product p at sales location [ for scenario s in period t;
cm captures unit cost of marketing for product p. Eq. (17) derives the
change in inventory IC in period t from inventory I of product p at
operations location [ at the end of period t and t—1 evaluated with
the cost price e of product p.

NSy — ( >

Yoist - Vp— > Mpkr'cmp) =0

(p.G.)) e PC:le LA (. ePl?
VseS; t=1...T (16)
IC— > (p—lpe1)-ep=0 t=1...T a7)
(p.h) e PL?

Variable costs of operations VCO for scenario s in period t are
considered in (18) covering procurement, production, overtime,
storage, and transportation costs as well as factoring losses. The
costs of procurement are derived from transportation quantities Y
of raw materials p delivered from procurement location [ at the
cost price e of product p. Gains from cash discounts are deducted
according to the amount of accounts payable for early payment
AP~ and the discount rate cd.

The costs for production, storage, and transportation are
derived using respective quantities X, I, Y as well as capacity
factors kx, ki, ky and cost rates cx, ci, cy. O captures the overtime
required at operations location [ in period t at the cost rate co.
Factoring losses result from the amount of sold accounts recei-
vable AR~ and the discount rate fd.

VCOs— Z Yp[js[ . eIJ_APs_t .cd+ Z Xplst . kxp - Cx
(p,(lj)) e PC:l € LE e PLDp:p cF
+ > Dickip-ci+ > Yoy - ky, - oy
(p.hy e PL? (p.(Lj)) € PC
+ZOu-col+ARst-fd)=0 VseS: t=1...T (18)
le Lo

4.2. Constraints for the physical domain

Egs. (19) and (20) ensure mass balance of inventory I of final
product p and raw material r at operations location I at the end of
period t. Transportation quantities Y capture inflows and outflows
at operations location ! for scenario s in period t. X denotes the
production quantity of final product p at location [ for scenario s
in period t with o containing the direct demand coefficient of raw
material r for final product p. Initial inventory and target inven-
tories are considered in (21) to account for seasonal stocks in
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a rolling horizons approach.
Iplt—l + Z ijlst+xplst_ Z Ypljst"plt =0
®.G.h) e PC (p.(Lj) € PC
v(p,) ePL? :peF VseS; t=1...T (19)

Lici+ Y Yise— >

Opr - Xplst_Irlt =0

(r,G,h) e PC (p,r) € BOM:(p,]) € PL?
v ) ePL? :reR; VseS; t=1...T (20)
Lio=1%: Iy =I ¥(p,)) e PL? 1)

Eq. (22) determines a fraction hf of raw material r required for
production at operations location I in period t+1 to be already in
stock at the end of period t to consider procurement lead times.
Production lead times are implemented accordingly in (23)
requiring a fraction h° of transportation quantity Y of final
product p from operations location [ to sales locations j in period
t+1 to be available in stock at the end of period t.

hE . Z Opr + Xplst+l -l <0
(p,r) € BOM:(p,l) € PLOP
v(r)ePL? :reR; VseS; t=1...T—-1 (22)

(0)
hop. Z Ypljst+1 *Iplt <0
(.(j)) e PC;jeIA

Y(p,)ePL :peF; vseS; t=1...T—1 (23)

Since supply chains in the consumer goods industry have a
deliver-to-order decoupling point, safety stocks are introduced at
different distribution stages to prevent stockouts (Fleischmann
et al., 2008). We assume accurate demand data and exclude safety
stocks in the following. However, they could easily be introduced
to the model. Limited production capacity capX and storage
capacity capl at each operations location [ is considered in (24)
and (25).

> kxp - Xpg—Op <capX; VIel%; vseS:; t=1...T (24)
@) ePL®peF

> kip- Iy <capl; VIel%; t=1...T (25)
(p.) € PLP

Production capacity already reflects average capacity loss due
to setup times (Fleischmann et al., 2008). kx and ki denote the
capacity need of product p per unit of production and storage.
Production capacity at operations location [ in period t can be
extended in (26) using overtime O capped at a maximum level
depicted as fraction 0™ of standard capacity.

Oy <capX,-0™* vlel%; t=1...T (26)

In (27), transportation quantities Y of product p delivered to
sales location [ are restricted to customer demand but can be
extended using marketing activities. The amount of marketing
activities for product p at sales location [ for scenario s in period t
is captured in M. n contains the coefficient of marketing effec-
tiveness converting the amount of marketing activities into
additional customer demand. Eq. (28) caps M at a maximum level
depicted as fraction M™** of normal customer demand. Physical
decision variables are restricted to the non-negative domain in
(29).

> V=N Mpg <dpge V() ePLY:; VseS: t=1...T (27)
(p.Gi.) e PC

- Myt < dpise - M™> V(p,l) e PL?; vseS; t=1...T (28)

Ol[v’plvaplSthpljSt vXplst >0 (29)

4.3. Constraints for the financial domain

Egs. (30) and (31) determine the amount of accounts recei-
vable for factoring AR~ and the amount of accounts payable for
early payment AP~ for scenario s in period t according to sales
revenues and purchases of raw materials. AR and AP capture the
balance of remaining accounts receivable and payable in scenario
s at the end of period t.

Yyist - Vp—ARG—ARy =0 VseS; t=1...T (30)
(0,G.1) e PC:l e [A

Yosst - ep—AP3—APq =0 VseS; t=1...T 31
(p,(Lj)) e PC:l e LE

Cash position in scenario s at the end of period t is determined
by (32)—(35). Eq. (32) calculates cash C considering cash flow from
operations OCF, open items management OM, financial manage-
ment FM, and exogenous cash flow ec. Exogenous cash flow ec
covers cash-relevant fixed costs, interest on long-term debts,
taxes, and dividend payout in period t.

Cst—1—0OCFst +0OMg +FMy—Coy =ec; VseS; t=1...T 32

In (33), cash flow from operations OCF for scenario s in period t
considers payments for marketing, production, overtime, trans-
portation, and storage due in the same period. Payments for
marketing activities are calculated from the amount of marketing
activities M for product p at sales location I for scenario s in period
t at the cost rate cm for product p. Payments for production
quantities X as well as storage quantities I are derived using
respective capacity factors kx and ki as well as cost rates cx and ci.
O captures the amount of overtime used at location [ in period ¢t
and co depicts the corresponding unit cost of overtime. Payments
for transportation quantities Y are derived using capacity factor ky
for product p and cost rate cy for the transportation connection
from location [ to j.

OCst—( D Mps-cmp+ > Xp - kxp - cx)

(p.)) e PLA (p)ePL%:peF
+ ) 0k-co+ D Y - ky, - oy
leLop (p.(lj)) e PC
+ > Ipg-kip-cii| =0 VseS; t=1...T (33)
(p,l) e PLP

Open items for scenario s incurred in period t are due in the
following period. Accounts receivable can be sold to a factor at a
discount rate fd and suppliers offer a cash discount rate cd for
early payment in the same period. Eq. (34) considers cash flows
from open items carried forward from the previous period and
cash flows from the current period due to factoring and early
payment. Financial management in (35) covers the positions in
short-term investments FI and short-term borrowing DS for
scenario s at the end of period t considering interest rates if!
and i® in period t—1.

OMs—(ARst—1 +ARy; - (1—fd)—APs_1—AP; - (1—cd)) =0
vseS; t=1...T (34)

FMe—(Flge_1 - (141 1)—Flg—DSg;_1 - (1+1£%)+DSst) =0
vseS; t=1...T (35)

A minimum cash position C™" to serve short-term financial
obligations is required by the bank and implemented in (36).
In (37), short-term borrowing DS is restricted to the bank line of
credit DS™**, Balances of financial positions are initialized in (38)
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and (39) restricts financial decision variables to the non-negative
domain.

Ce>CMN vseS; t=1...T (36)
DSy <DS™™ vseS; t=1...T 37)
Flgo=FI°; AR =AR’; Cq=C° DS =DS’;

APy, =AP° VseS (38)
Flst,DSst,ARst,APst,Cst, ARy, APy > 0 (39)

5. A case-oriented example

A case-oriented example is utilized to highlight the flexibility
of the robust framework for value-based performance and risk
optimization developed in this paper. The case description and
the approach for scenario generation are provided in Section 5.1.
We analyze the base case and conduct a sensitivity analysis
for major parameters from the physical and financial domain
in Section 5.2. In Section 5.3, we illustrate the trade-off between
solution and objective robustness depending on the risk prefer-
ence parameter and evaluate the impact on upside potential
as well as downside risk in terms of EVA. To determine a robust
level of information for data gathering and scenario generation,
we examine on information robustness ex ante and ex post in
Section 5.4.

5.1. Case description and scenario generation

The example covers a planning period of 13 periods (each
equal to four weeks) and thus comprises one seasonal cycle and
one financial year. The company manufactures three products
(P1-P3) in two plants (F1 and F2). Two suppliers (S1 and S2)
provide the required raw materials (R1-R3). Final products are
stored in two warehouses (W1 and W2) before being delivered
to five sales markets (M1-M5). Supply chain layout, transporta-
tion unit cost, and product allocation to locations is presented in
Fig. 2.

Both plants F1 and F2 provide a production capacity of 600,000
capacity units (cu) and storage capacity for raw materials of
500,000 cu. The unit cost of production is 2 monetary units (mu)
per cu and the unit cost of storage is 0.1 mu per cu. Production
capacity can be extended up to 40% using overtime at a cost of
0.5 mu per cu. Both warehouses W1 and W2 provide a storage
capacity of 1 million cu at a unit cost of 0.1 mu per cu. Lead time
for procurement and production is 0.25 (equal to one week)
respectively.

03 _~M1) P1,P2,P3
P1, P2, P3
04y 0% .(m2) P1,P2,P3

M3) P1, P2, P3

Fig. 2. Supply chain layout, transportation unit cost [mu/cu], and product
allocation.

Products P1 and P2 are made of 1 unit of raw material R1 as
well as R2 and consume 2 cu of production capacity. Product P3
consists of 1 unit of raw material R1 and R3; manufacturing
requires 2 cu of production capacity. Storage and transportation
requires 1 cu for each product. In Table 1, sales prices, cost prices,
and cost for marketing activities are provided. Initial and target
inventory levels for all materials and products can be found in
Table 2.

Different seasonal demand scenarios are derived from a base
level of customer demand (cf. Table 3) using probabilistic scenario
factors as well as a harmonic oscillation with an amplitude
amp=35%. The distribution of the scenario factors can be pragma-
tically derived based on expert estimates. The underlying stochastic
process determining the scenario factors is assumed to be specified
correctly by a triangular distribution with minimum a=0.7, mode
¢=09, and maximum b=1.2. Demand d for product p at sales
location [ for scenario s in period t is calculated as

2- T-1
dpist = 5f s - dl,j, . <l +amp - cos (Tn (t+ T))) (40)

with the scenario factor sf for scenario s, d” as the base level of
customer demand for product p at sales location [ and T as the
length of the seasonal cycle. The seasonal peak is reached in the mid
of the seasonal cycle. Customer demand can be increased up to 10%
using marketing activities with a factor of marketing effectiveness
equal to 1.

Initial balances are 0 mu in short-term financial investments,
11 million mu in accounts receivable, and 2 million mu in cash as

Table 1
Product master data.

Products Sales price Cost price Marketing cost
(mu) (mu) (mu)

P1 12.0 11.0 3.0

P2 16.0 14.5 4.0

P3 19.0 17.0 5.0

R1 - 1.0 -

R2 - 2.0 -

R3 - 5.0 -

Table 2

Initial and target inventory levels (units).

Products Operations locations
F1 F2 w1 w2
P1 0 0 10,000 15,000
P2 0 0 30,000 30,000
P3 0 0 40,000 30,000
R1 80,000 80,000 0 0
R2 50,000 30,000 0 0
R3 0 80,000 0 0
Table 3

Base level of customer demand (units).

Products Sales locations

M1 M2 M3 M4 M5
P1 32,000 27,000 30,000 32,000 34,000
P2 48,000 49,000 52,000 52,000 55,000
P3 60,000 65,000 57,000 60,000 64,000




142 G.J. Hahn, H. Kuhn / Int. J. Production Economics 139 (2012) 135-144

well as 9 million mu in short-term debts and 4 million mu in
accounts payable. The average balance of fixed assets amounts to
50 million mu. Interest rates over the planning period are 0.2% for
short-term investments and 0.7% for short-term borrowing
(before tax) as well as 0.6% for the hurdle rate (after tax). The
bank line of credit is restricted to 11 million mu and minimum
cash must exceed 2 million mu. Discount rates are 4% for
factoring and 2% for early payment. Monthly exogenous cash
flow is 4.2 million mu. Fixed costs per period add up to 4.1 million
mu including depreciation.

5.2. Base case and sensitivity analysis

For the base case, we assume a relatively risk-averse decision-
maker with a risk preference parameter y=0.3 and consider a
scenario set of size 5 derived from the demand distribution as
specified above. The optimization model is implemented in ILOG
OPL v6.3 according to Eqs. (10)-(39) and consists of 4945
continuous variables and 5179 constraints. Optimal solutions
can be found using CPLEX v12.1 on a computer with a 2.13 GHz
processor and 3 GB RAM at a computing time below 1s. We
obtain an expected EVA of 1.28 million mu covering an upside
potential of 2.34 million mu and a downside risk of 1.06 million
mu. The corresponding scenario-specific probabilities and results
are listed in Table 4.

In the following, we conduct a sensitivity analysis on four
parameters of the decision model: maximum overtime (0™), the
bank line of credit (DS™**), the amplitude of demand seasonality
(amp), and the hurdle rate (i""). To obtain sensitivities, we vary the
parameters in the ranges of +5% and + 15%. The results are
summarized in Fig. 3.

As can be seen in the figure, the hurdle rate i"" is negatively
correlated with expected EVA and shows significant impact since
a variation of +5% and + 15% results in a change in expected
EVA of between 20% and 60%. Increasing the hurdle rate induces
higher costs of capital and thus directly reduces EVA. For
demand seasonality, variation of the seasonal amplitude amp

Table 4
Scenario-specific results of the base case.

Scenario
S1 S2 S3 S4 S5
Probabilities 0.035 0.208 0.398 0.307 0.052
EVA (million mu) —-9.94 —3.44 1.48 4.70 5.97
60 N
451 N —_——rm — e
AN === DS = amp

. 30F '\
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15 ‘*-____h . u
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Fig. 3. Results of the sensitivity analysis.

leads to changes in the EVA expected within a range of —25% to
18%. A more volatile demand seasonality requires additional
overtime and inventories to manage capacity during the seasonal
cycle. Therefore, operating profits decrease while working capital
rises and ultimately EVA deteriorates.

In contrast, maximum overtime O™ and the bank line of
credit DS™* are positively correlated with the expected EVA.
Since they represent restrictions of the decision model, a relaxa-
tion increases EVA. The results of the sensitivity analysis vary
within a range of —21% to 14% (maximum overtime) and —207%
to 12% (bank line of credit). The sharp decline in the expected EVA
when reducing the bank line of credit by 15% originates from the
fundamentally poor financial situation of the company in focus.

5.3. Solution and objective robustness

In this section, we illustrate the trade-off between solution and
objective robustness depending on the risk preference of the
decision-maker. The expected value of perfect information (EVPI)
is utilized to quantify the impact of uncertainty. We examine the
base case with the corresponding decision model for the ‘here-
and-now’ (HN) approach as described above and vary the risk
preference parameter 7y € (0; 1]. The results for the ‘wait-and-see’
(WS) approach are derived solving the deterministic equivalent of
the decision model for each scenario.

Upside potential (UP) and downside risk (DR) are calculated
for the HN and WS approach according to the risk preference
parameter (cf. Fig. 4). The values of the WS approach are upper
and lower bounds for UP and DR in the HN approach with 2.83
million and 0.90 million mu respectively. The gap between the
HN and WS approach equals the EVPI for a specific risk preference
and covers the manageable risk in a planning-based risk manage-
ment approach. Given the upper and lower bounds, the decision-
maker balances solution and objective robustness as well as UP
and DR to select the appropriate plan according to the individual
risk preference.

For y < 0.2, a highly risk-averse decision-maker is willing to
further reduce downside risk at the cost of a significant loss in
upside potential. Consequently, objective robustness increases
due to reduced downside risk but at the same time leads to less
solution robustness since the EVPI increases. A relatively solution
robust plan can be found for less risk-averse preferences of y > 0.2
and decreasing objective robustness. Investigating the first-stage
variables for overtime and seasonal inventories in the risk-neutral
and the extremely risk-averse case, we obtain the results in Fig. 5.
As can be seen from the figure, a risk-averse decision-maker
manages asset utilization more restrictively and determines
lower levels of inventories and overtime.

3.000 - EVPI
upWs
2700 -
g L e —————. upHN
o 2400 ——
8 /- o
=3 2100 +
a /
~ 1.800 -
5 //
1.500 ~
/
1.200 +/ i
s DRWS
D = 1 1 L 1
0 0.2 0.4 0.6 0.8 1.0
risk- risk-

«—— Risk preference ——

averse neutral

Fig. 4. Trade-off between solution and objective robustness.
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Fig. 5. Inventories and overtime for different risk preference parameters.

5.4. Information robustness

In the following, we examine ex ante and ex post information
robustness with respect to the size of the scenario set. The
continuous distribution of the scenario factors is discretized in
scenario sets of uneven size |S|=3,...,15 in such a way that the
first-order moments match the continuous probability distribu-
tion. This approach is sufficient according to Heyland and
Wallace (2001) since we solely use measures based on first-order
moments in the optimization model. The discretization method
described in Klugman et al. (2004) is applied deriving probabil-
ities as

E[min(X,a)]—E[min(X,a+h)]

h +1—cdf(a), Xx=a
prx = 2. E[min(X.x)]—E[min()ff,x+h)]—E[min(X,x—h)]' d<x<b
E[min(X,b)]—E[min(X,b—h)] _
B 1+cdf(b), x=b
(41)

whereas x=a,a+h,...,b—h,b denotes the |S| equidistant knots
with the distance h=(b—a)/(|S|—-1) and the lower and upper
bound a and b. pdf and cdf cover the probability density function
and the cumulative distribution function of the continuous dis-
tribution. min(X,u) denotes the limited expected value of u
defined as

u
| x-pdfeo+u- 1-cdfwy (42)

Ex ante information robustness considers the influence of
uncertainty on the solution and can be measured using the EVPI.
We apply an ‘in-sample’ approach according to Kaut and Wallace
(2007) and sample 30 independent replications of the discretized
distribution for each size of the scenario set based on |S|-50
random numbers per replication. The resulting instances are
solved for the HN and the WS approach with the risk preference
parameters y = 0.3 and 0.7 using CPLEX v12.1. The corresponding
optimization models are implemented as described above and
optimal solutions can be found on a computer with a 2.13 GHz
processor and 3 GB RAM at computing times below 1s per
instance. The results are provided in Table 5.

The impact of deviating realized scenarios on EVA is utilized to
evaluate ex post information robustness. We apply an ‘out-of-
sample’ approach according to Kaut and Wallace (2007) and
sample 30 independent replications for a scenario set of size 15.
The resulting instances are solved with the HN approach for
y=0.3 and 0.7 using CPLEX v12.1 but first-stage variables are
fixed according to the ex ante decisions above. The results are
summarized in Table 6.

Expected value (EV), coefficient of variation (CV), and two-
sided confidence intervals (CI) at 95% are calculated. With an
increasing number of scenarios the expected value of the EVPI
and thus the impact of uncertainty decreases within a range of
206,000 to 224,000 mu. The coefficient of variation and the

Table 5
Analysis of ex ante information robustness.

EVPI ['000 mu] Size of scenario set |S|
3 5 7 9 11 13 15
y=03
EV 793 651 622 614 612 588 587
cv 0.07 0.05 0.03 0.04 0.03 0.03 0.02
Closy +20 +12 +8 +9 +8 +7 +4
y=0.7
EV 768 598 559 557 544 542 544
cv 0.06 0.04 0.04 0.03 0.03 0.03 0.02
Clysy +18 +9 +7 +7 +6 +6 +4
Table 6

Analysis of ex post information robustness.

EVA ['000 mu]  Size of scenario set |S|
3 5 7 9 11 13 15
7y=0.3
EV 1252 1329 1333 1347 1339 1365 1374
v 0.10 0.09 0.09 0.09 0.09 0.08 0.09
Closy +46 +43 +43 +44 +43 +43 +46
y=0.7
EV 1271 1382 1400 1409 1408 1410 1417
v 0.09 0.09 0.09 0.08 0.08 0.08 0.09
Closy +44 +45 +45 +45 +44 +45 +45

confidence interval also diminish by 0.04 to 0.05 as well as
+ 14,000 to + 16,000 mu and lead to more robust results ex ante.

For the ex post perspective, we also calculate expected value,
coefficient of variation, and two-sided confidence intervals. Aver-
age EVA increases between 122,000 and 146,000 mu at constantly
low and robust levels for the coefficient of variation (approx. 0.09)
and the confidence interval (approx. + 44,000 mu). In summary,
we already obtain relatively information robust results for sce-
nario sets of size 5 to 7. Consequently, data gathering and
scenario generation can be focused on the most relevant aspects
and the decision-maker can limit the number of contingency
plans to a manageable size to ensure practicability without
compromising on robustness.

6. Conclusion and outlook

In this paper, we present a holistic framework for value-based
performance and risk management in supply chains. Value drivers
of mid-term supply chain management are highlighted and
performance levers as well as sources of operational risk are
examined from a decision-oriented perspective. The concept of
Economic Value Added (EVA) as a prevalent performance
indicator is applied to manage upside potential and downside
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risk in terms of value creation. Different criteria of robustness
are integrated into a comprehensive approach for robust
optimization.

The optimization-based framework presented in this paper
provides real decision support for value-based management as
opposed to common explanatory approaches. A direct approach to
risk management is pursued utilizing scenario-based information
instead of expected values and risk-adjusted cost of capital. Different
implications of a robust optimization approach are derived using
a case-oriented example. Solution and objective robustness are
conflicting criteria and depend on the risk preference of the
decision-maker. However, the risk preference should be calculated
in retrospect by balancing upside potential against downside risk for
different values of the risk preference parameter. Information robust
results can be derived even for comparably small scenario sets
which allows the decision-maker to focus on the most relevant
scenarios for data gathering and scenario generation.

Regarding further research, there are multiple opportunities to
extend the presented framework. Integrated pricing could be
covered to improve operating profit margin as one major value
driver. The influence of an ‘incorrect’ forecasting model for scenario
data could be analyzed to derive implications for data preparation
and model selection. Moreover, the decision model could be
extended towards a hierarchical planning framework by introducing
a short-term planning level below mid-term S&OP. This would allow
investigation into the effects of detailed lot-sizing and scheduling as
well as short-term financial planning in the supply chain.

Mid-term investment and financial planning covering pur-
chase and sale of technical equipment as well as further means
of funding could be considered to enhance asset utilization as a
key value driver. (Dis-)Investment and capacity adjustment plan-
ning promise to be interesting aspects since they enable perfor-
mance gains due to business growth but at the same time imply
significant risk due to limited reversibility.
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