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Abstract. This paper proposes a hybrid computational intelligent system for the detection

of statistical arbitrage opportunities in pairs of assets. The proposed methodology combines

nonlinear neural network autoregressive models with GARCH parametrizations of volatility

for describing the dynamics of the correction of relative mispricings. First results from this

approach seem encouraging; further experimentation on the optimal sampling frequency, the

forecasting horizon and the points of entry and exit is conducted, in order to improve the

economic value when transaction costs are taken into account.
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1 Introduction

In the last few years, a substantial amount of computational intelligent methodologies have been applied to

the development of financial forecasting models that attempt to exploit the dynamics of financial markets.

A great majority of intelligent approaches employ a network learning technique, such as feedforward, radial

basis function or recurrent NN [13, 17], although certain paradigms such as genetically-evolved regression

models [5, 8, 11, 14] or inductive fuzzy inference systems [9] are also encountered in the literature. Forecasting

experience has shown that predictability in data can increase if modelling is directed to a combination of

asset prices rather than (raw) individual time series. Combinations can be seen as a means of improving the

signal-to-noise ratio and hence enhancing the predictable component in the data [3].

Statistical arbitrage is an attempt to profit from pricing discrepancies that appear in a group of assets.

The detection of mispricings is based upon the identification of a linear combination of assets, or else a

“synthetic” asset, whose time series is mean-reverting and has finite variability. For example, given a set of

? This is an extended working-paper version of the article “An Intelligent Statistical Arbitrage Trading

System” appeared in Grigoris Antoniou et al. (ed), ADVANCES IN ARTIFICIAL INTELLIGENCE,

Lecture Notes in Computer Science, Volume 3955/2006, pp. 596-599. The original publication of the

afore-mentioned paper is available at http://www.springerlink.com/content/l1v8v34t03l22717/.
?? This research was financially supported by the Public Benefit Foundation “Alexander S. Onassis”

(www.onassis.gr), under the 2003-2004 Scholarships Programme, and by a grant from “Empeirikion”

Foundation (www.empirikion.gr).



Electronic copy available at: http://ssrn.com/abstract=1984252

2

assets S1,...,Sk, a statistical mispricing can be considered as a linear combination β = (b1, b2, ..., bk) such

that the portfolio value

Πt ≡ b1S1t + b2S2t + · · ·+ bkSkt

is mean-reverting with zero mean and possibly time-dependent (finite) volatility σ2
t (Sit is the value of asset

i at time t). The vector β represents actual quantities of each asset (i.e. number of stocks) to be held in the

trading portfolio. The requirement of mean-reversion is to ensure that mispricings eventually “die out” and

do not grow indefinitely. If mispricings permanently disrupted the long-run relationship between the assets,

it would be impossible to control the risk exposure of the trading portfolio.

The standard approach to identify statistical mispricings is to run a regression of the values of one

asset, say S1t, against the others S2t, ..., Skt and test the residuals for mean-reversion. Several tests have

been developed for this purpose in the econometric literature, the most famous of which being the Dickey-

Fuller and the Phillips-Perron (see e.g. [6]). Note that the residuals of the regression model represent the

mispricing at each time t of S1t relative to its fundamental value spanned by the group of fundamentally-

related securities {S1t,...,Snt}. The next step is to create a model that describes the dynamics of mispricings,

i.e. how errors of different magnitude and sign (positive/negative) are corrected over time. Model forecasts

are then incorporated into a dynamic trading strategy. An arbitrage trading system identifies the “turning

points” of the errors time-series and takes proper positions on the constituent assets when mispricings

become exceptionally high (i.e. β for a positive and −β for a negative mispricing). An arbitrage trading

strategy, as described above, is not without risk; although profitable in the long run, its instant revenue

depends heavily on the speed at which market prices return to the predicted norm within a short period of

time. Generally, the weaker the mean-reversion the higher the probability of observing adverse movements

of the synthetic.

Several authors have suggested approaches that attempt to take advantage of price discrepancies by

taking proper transformations of financial time-series; see e.g. [2, 3, 16] for stocks of FTSE 100, [4, 10] for

equity index futures and [12] for exchange rates. Amongst them, [3, 4, 12] employ a neural network model to

describe the dynamics of statistical mispricings. In this paper, we propose a new intelligent methodology for

the identification of statistical arbitrage opportunities. Our approach deviates from the main trend in that it

attempts to detect nonlinearities both in the mean and the volatility dynamics of the statistical mispricing.

For this purpose, we use a newly proposed class of combined neural network -GARCH volatility models. The

methodology is applied to the detection of statistical arbitrage opportunities in a pair of two stocks traded

in the Mumbai Stock Market (India).

The rest of the paper is organised as follows: In section 2 we describe the application data, including

intraday quotes of stock prices. Section 3 presents the methodology for detecting price discrepancies between

stocks and section 4 details the NN-GARCHmodel used to forecast the dynamics of the statistical mispricing.

In section 5 we present two arbitrage trading systems based on a high- and low-frequency predictive model.

Section 6 concludes the paper and discusses directions for further research.

2 Sample data

For the application and testing of the trading strategy we chose the stocks of Infosys Technologies Ltd and

Wipro Ltd, both Application Software companies from the Indian stock market. We did so for two reasons:

1. We plan to further deploy the system onto a larger set of stocks with sector neutrality so we chose

two active names from the Technology/Software sector. Choosing stocks from the same industry sector

usually results in better mean-reversion behavior. In addition, both companies have active ADR issues

in the US which adds some interesting interactions and influences.
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2. We are in the process of investigating the extension of statistical arbitrage equity strategies into devel-

oping and emerging markets. We are also interested in studying in detail the execution intricacies of

various markets and thus we will be paying special attention to trading costs in follow-up work.

Both stocks trade in the National Stock Exchange of India, headquartered in Mumbai, India. The NSEI

is a fully automated order-driven market. We are using tick-by-tick data, time and sales as well as best

bid and offer and corresponding sizes for the historical period from February 1, 2005 until November 8,

2005. Subsequently the tick data is consolidated into 1-minute bars that include the open, high, low and

close price, the total share and tick volume and the volume-weighted average price. We have appropriately

adjusted the price and volume data for dividend and split actions. We plan to use the tick data information

to work out our trading-cost models in subsequent studies.

3 Identifying statistical mispricings

Figure 1 shows hourly closing prices of Infosys and Winpro from February 2 to November 83. As a first

attempt to construct a synthetic asset, we ran a regression of Infosys against Winpro, hence forth S2 and S1

respectively, over the first 200 sample observations and we then used the regression coefficients to compute

the statistical mispricing. The resulting series is depicted in figure 2. Observe that the estimated combination

is weakly mean-reverting especially in the first 600 observations. The Phillips-Perron (PP) test statistic over

the whole sample period is -2.0183, which is below (in absolute terms) the 1, 5 and 10% critical levels (-3.88,

-3.36 and -3.04 respectively). Hence, the hypothesis of mean reversion cannot be accepted.

In order to control the non-stationarity of the synthetic asset, we adopt an adaptive estimation scheme

in which the coefficients of the linear combination are periodically re-calculated. In particular, we define the

mispricing as

Zt ≡ S2t − bt−1

0 − bt−1

1 S1t

where bt0, b
t
1 are estimated on the basis of a window of observations of length L: {S1j , S2j , j = t−L+1, ..., t}.

Instead of using linear regression, we adopt a slightly different procedure for calculating betas: we define b1
as the mean price ratio between the two stocks over the specified window and we subsequently choose b0 so

as to minimize the total variation of Zt within the window, i.e.

bt1 ≡ mean (S2j/S1j , j = t− L+ 1, ..., t)

and

bt0 ≡ mean(S2j , j = t− L+ 1, ..., t)− bt0 mean(S2j , j = t− L+ 1, ..., t)

This procedure has been experimentally found to give more reasonable estimates of the synthetic vector,

improving their stability over time. In figure 3 we show the synthetic time series resulting from a different

choice of the window length. Observe that the more often the values of betas are updated, the stronger

is the mean-reversion of the synthetic and hence the more abrupt are the corrections of mispricings. All

depicting series are found mean-reverting; the PP test statistic over the entire sample of observations is

-10.09 for W = 10, -6.49 for W = 30 and -4.56 for W = 100, which are above common critical levels. In

subsequent experiments, we report results obtained for a synthetic calculated on the basis of a window of

10 observations.

3 Prices in this diagram are adjusted for splits and dividends.
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Fig. 1. Hourly data of Infosys and Winpro from 02/02/2005 to 08/11/2005.
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Fig. 2. The synthetic asset constructed from a static regression.

4 Modelling the dynamics of the statistical mispricings

To describe the dynamics of the statistical mispricings we use autoregressive models relating the current level

of Zt to its own history. This gives us an idea of how mispricings of different size and sign (positive/negative)
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Fig. 3. The synthetic time series obtained from an adaptive estimation scheme for a window length of 10,

30 and 100, respectively.

are corrected over time. We also go one step further to model both the mean and the volatility structure

of the statistical mispricings. This is because in high sampling frequencies (intra-day data), we find that

the volatility of Zt (i.e. the average uncertainty about the realised value) is not constant over time but

strongly depends on the history of Zt. In particular, large (positive or negative) shocks to Zt are on average

followed up by large shocks of either sign. This “clustering” of volatility, typical in most financial time

series, is termed in the literature as Autoregressive Conditional Heteroskedasticity (ARCH [7]. Any changes

in the short-term volatility level of Zt deserve special attention from a modelling point of view, as they have

important implications for the risk control of the statistical arbitrage. Until today, the most popular models

for the volatility dynamics of a time series are the class of GARCH models [1]. A GARCH model effectively

shows how a sudden negative or positive mispricing affects the future volatility of mipricings.

In our approach, we attempt to model both nonlinearities in the correction of mispricings as well as

volatility clustering effects. For this purpose, we use a recently proposed class of joint neural network-

GARCH models[15] that is intended to capture both effects. In this framework, an autoregressive model for
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the conditional mispricing takes the general form:

Zt = φ0 + φ
′ · Zt + f(Zt;θ) + εt (4.1a)

εt|It−1 ∼ N
(

0, σ2
t

)

(4.1b)

σ2
t = α0 +

p
∑

i=1

αiσ
2
t−i +

q
∑

j=1

βjε
2
t−j (4.1c)

where φ0 ∈ R, Zt is a vector of lags of Zt (Zt = (Zt−1, Zt−2, ..., Zt−n)
′ ∈ R

n), εt is the innovation term,

φ ∈ R
n and f(Zt;θ) is a feedforward neural network with a single hidden layer and l neurons, i.e.

f(Zt; θ) =

l
∑

j=1

λjF (w′

j · Zt − cj)

where F (z) = 1/(1 + e−z) is the logistic function, cj , λj ∈ R and wj ∈ R
n. With It−1 we denote the

information available up to time t, including the history of mipricings Zt, shocks εt and volatilities σ2
t .

Note that in the above specification, εt is assumed conditionally normally distributed with volatility σ2
t that

depends on past σ2
t ’s as well as (the magnitude of) past unanticipated mispricings.

In [15] we propose a complete model-building cycle for NN-GARCH models that comprises the following

stages: a) model specification (e.g. determining the number of neurons in the hidden layer, the connections

from inputs to hidden neurons, etc), b) parameter estimation and c) in- and out-of-sample evaluation. This

is a simple-to-complicate model-building approach that starts from a linear model and gradually augments

the neural network architecture, if data indicate so. The procedure is briefly described as follows:

1. Estimate a linear model with no GARCH component and choose the optimal set of input variables by

means of AIC of SBIC.
2. Test the null hypothesis that the true data-generating process is a linear model against the alternative

of a neural network model with a single hidden neuron. If linearity is not rejected at a given confidence

level then stop. Otherwise, estimate a NN model with a single neuron and test it against a NN model

with an additional neuron. Repeat the above procedure until first acceptance of the null.
3. Once the mean model (4.1a) is specified, test the null hypothesis of no GARCH effects in the volatility

of the residuals of the model against the hypothesis that residuals follow a GARCH process of a given

order. If null is not rejected then stop. Otherwise, jointly estimate a NN-GARCH model.

There are two important things to note about the above procedure. First, the decision of whether to add

an extra neuron is not based on heuristic arguments but on formal statistical tests of “neglected nonlinearity”

(see [15] for details). Second, the procedure presented above does not directly estimate a NN-GARCH model

but adjusts the specification according to teh complexity of the data set (linear- or nonlinear-in-mean model,

with or without a GARCH component). Hence, it aims at producing non-redundant models that are less

likely to overfit the data.

5 Application: detecting statistical arbitrage in the pair of Indian stocks

Our methodology for exploiting statistical arbitrage opportunities consists of the following steps:

1. Constructing a “synthetic asset” and testing for mean-reversion in the price dynamics. Synthetics are

calculated for various sampling frequencies.

2. Modelling the mispricing-correction mechanism between relative prices. For this purpose we use the

general framework of NN-GARCH models (4.1).
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3. Obtaining 1- and h-step-ahead forecasts for the future value of the mispricing. Forecasts are given in

the form of a conditional probability density from which confidence bounds on the future value of the

mispricing are derived. The estimation of an h-step-ahead conditional density is based on the simulation

of 800 error scenarios. Errors are calculated as σtut, where σt is the volatility forecast, obtained from

equation (4.1c) and ut are sampled with replacement from the full model’s standardized residuals (the

residuals divided by the estimated sigmas). In this way, we avoid imposing restrictive assumptions on

the distribution of the error-generating process.

4. Implementing a trading system to exploit the predictable component of the mispricing dynamics. The

trading strategy is as follows: buy (long) the synthetic asset if Zt < ẐL,α

t+h and sell (short) the synthetic

asset if Zt > ẐH,α

t+h , where ẐL,α

t+h ẐH,α

t+h denote the (1− α)% low and high confidence bound on the value

of the mispricing h steps ahead4. In our approach the confidence interval is a decision variable, which

has to be adjusted so that trading results are optimized.

5.1 Experiment A: a high-frequency model

In this section, we give an example of a microscopic model, estimated from 1-minute closing prices. The

values of the synthetic from August 2 to August 19, a total of 5000 observations approximately, are used

for the specification of the mispricing-correction model and the sample observations from August 29 to

September 22 for out-of-sample evaluation. At this sampling frequency, we find both nonlinear corrections

of mispricings and ARCH volatility effects. The specified NN-GARCH model includes lags 1-10 in the linear

part, 1 hidden neuron with variable Zt−10 connected to it and a GARCH(1,1) equation.

We report results from a trading system that is based on 5-minute-ahead forecasts. Figure 6 shows the

performance of arbitrage trading strategies by varying the confidence level. Observe that as the interval

gets narrower (1 − α is decreased) the accumulated profit becomes higher, although the number of trades

placed on the synthetic is almost exponentially increased. Hence, the average profit per trade gets lower.

Figure 7 shows several trading instances of a system with bounds set at 80% confidence. “Circles” represent

entry and “crosses” symbolise exit points. Note the effect of the GARCH component of the model, which

is to dynamically adjust the confidence bounds, or else the uncertainty about the future realised value,

whenever large unexpected mispricings occur. This in general prevents trading in periods of high volatility

and risk (see e.g. the first 50 observations of the lower “snapshot” of figure 7). In figure 4, we depict the

equity curve for the afore-described trading system for the period September 23 - October 11, 2005. The

total number of trades is 823 and the average profit per trade is 78.793/823=0.096 rupees. The profitability

of this high-frequency system is severely limited by the fact that positions are necessarily closed at the

end of the 1-minute interval5. It is important to note that keeping a trade open for a time interval grater

than 1 minute is equivalent to not adjusting b0 and b1 until the trade is closed. The final outcome of such

trades is strongly based upon how well the two synthetic time series, the every 1-min adjusted and that

calculated from unchanged estimates of betas, locally resemble each other. It is certain that as the values

of the mispricing calculated from unchanged estimates of betas have not been “seen” by the model, the

performance of open trades will be unpredictable in the long-run. However, the extend of unpredictability

has yet to be evaluated on an experimental basis.

4 Longing (shorting) the synthetic means buying (selling) 1 stock of S2 and selling (buying) bt−1

1 stocks of

S1.
5 Recall that the synthetic time series depicted in figure 7 (solid line) assumes periodic recalculation of

betas.
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Fig. 4. The profit & loss diagram of the arbitrage trading system described in Experiment A for the sample

period September 23 - October 11.

5.2 Experiment B: a lower-frequency model

As a next experiment, we calculate mispricings on hourly averages of stock prices. We use a sample of 804

observations, extending from February 8 to August 19, to specify and estimate the mispricing-correction

model and we evaluate the performance of the resulting arbitrage strategy in the period August 29 - October

11, 2005. Noticeably, significant ARCH effects were not detected on hourly synthetic prices, although non-

linearities in mean were present. The final error-correction model was thus a pure neural network regression

with lags 1-8 in the linear part and 1 hidden neuron with lags 1, 4 and 6-9.

The obvious advantage of low-frequency compared to high-frequency models is that arbitrage trading

positions last longer and thus potentially present larger profit opportunities. However, one should bear

in mind that as predictions are available not until the next hour, the course of the synthetic within this

time interval is largely undetermined. This of course affects the profitability of arbitrage positions. Figure 8

illustrates the point. The solid line shows the mispricing every 1 minute as computed by the hourly estimates

of b0 and b1 and the dotted lines represent a 30% confidence bound obtained by 2-hour-ahead forecasts.

The placing of a trade is based upon the position of the 1-hour ahead confidence bounds. The encircled

areas are typical examples of “heat” cases, where the synthetic moves in a direction adverse to the trading

decision. Note that although these trading decisions are correct in the long run, their riskiness is increased

when the synthetic experiences high volatility in the first period and hits the upper bound in the second

one. Generally, this performance is unavoidable and does not depend on the specific choice of the confidence

bounds; it is mainly the result of basing trading decisions on a macroscopic model that overlooks short-term

adjustments. In our implementation of trading strategies, we decided to stop a trade whenever it hits the

opposite bound in the corresponding sample time period. Of course, this strategy is not globally optimal

but it is a way to place a limit on losses due to adverse price movements.

Figure 9 shows the performance of arbitrage trading strategies in the sample period August 29 - Septem-

ber 22, 2005 for varying confidence intervals. Overall, this trading system is more profitable than the one

based on 1-minute bars: the number of trades is consistently lower and the average profit per trade is in-

creased at all levels. For wide confidence bounds (1−α > 0.8), trading becomes marginally profitable as the

average profit exceeds the benchmark transaction cost.



9

In figure 5, we show the equity curve corresponding to the 80%-confidence trading system for the sample

period September 23 - October 11, 2005. The chosen confidence level represents a relatively conservative

arbitrage-exploiting policy, which takes a position whenever large mispricings occur. The total number of

trades placed by the system is 9.3 and the average profit per trade is 55.60/9=6.18 rupees.
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Fig. 5. The evolution of the trading account for a macroscopic arbitrage-detection system with confidence

bounds set at 80% (Sample period: September 23 - October 11, 2005).

6 Discussion-Further research

This paper describes a new computational intelligent framework for detecting and exploiting short-term

statistical arbitrage opportunities in a group of assets. The innovation of our approach is that it uses condi-

tional density forecasts for the future value of the mispricing to properly design the arbitrage-exploitation

strategy. These forecasts are adaptive, in the sense that they explicitly take into account short-term changes

in volatility levels.

Experiments presented above show that our models are good detectors of arbitrage opportunities, as the

equity curves are statistically sloping upwards. However, the profitability of these trades in a real market

environment is still questionable given the various trading costs and market “frictions”. At present, we are

conducting further research on the optimal tuning of the parameters of our trading system, stop-loss criteria

as well as the possibility of combining forecasts from various sampling-frequency models so as to track both

the long- and short-term behaviour of the mispricing dynamics. First results from the latter approach are

rather encouraging.
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Fig. 6. The performance of the arbitrage trading strategy, corresponding to the microscopic system detailed

in Experiment A, as a function of the confidence level (Sample period: August 29 - September 22, 2005).

Panel A shows the accumulated profit, panel B the average profit per trade and panel C the total number

of executed trades in the designated period.
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bars of the mispricings time-series. Dotted lines represent a 80% confidence “envelope” on the value of the

mispricing. The decision on opening a trade is taken with respect to 5-minute-ahead forecasts.
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Experiment B. The solid line shows the minute-by-minute evolution of mispricings calculated from hourly

estimates of b0 and b1 and the dotted lines represent a 30%-confidence envelope based on 2-hour-ahead

forecasts. The decision of whether to open a trade is determined by the position of the confidence bounds

on the following 1-hour time interval.
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Fig. 9. The performance of the arbitrage trading strategy, corresponding to the macroscopic model detailed

in Experiment B, as a function of the confidence level (Sample period: August 29 - September 22, 2005).

Panel A shows the accumulated profit, panel B the average profit per trade and panel C the total number

of executed trades in the designated period.


