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Abstract In this paper I interrelate productivity analysis

and the theory of industrial organization. A proposition

proves that an industrial organization is efficient if and only

if it is supportable in the entry-proofness sense. Industrial

performance is decomposed in efficiency and technical

change terms as well as an industrial organization com-

ponent. The performance measure is shown to be consistent

with the Solow residual and Malmquist productivity indi-

ces for its components are provided.
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1 Introduction

In this paper I define benchmarking through a function that

maps two arguments, namely the object to be bench-

marked—a firm, represented by the pair of its input vector

and its output vector—and the backdrop against which it is

benchmarked—the industry—into a scalar, namely the

efficiency of the firm. The mapping summarizes a program

that identifies the best practice technologies or benchmarks

for the firm. The performance of a firm will be measured by

its output/input ratio or productivity—a concept that I will

connect explicitly to the aforementioned efficiency func-

tion. Aggregate performance may rise more than firm

performance scores suggest, if resources are better

allocated between firms. The excess is the industrial

organization effect.

Debreu (1951) recognized imperfections in economic

organization as a source of aggregate inefficiency and

Diewert (1983) analyzed them for open economies, focus-

sing on price distortions. I operationalize these ideas in an

activity analytic framework, but without using external

price information (such as the world prices an open econ-

omy faces), as Nesterenko and Zelenyuk (2007) do.

Another novelty is that my theory of benchmarking extends

my interrelationship of two value-based performance

measures—Diewert’s (1981) price index measurement and

Solow’s (1957) residual analysis—from the back-of-the-

envelope calculation for production functions (ten Raa

2005) to the activity framework.

There is more to the performance of a composite such as

an industry than micro or firm performance and composi-

tion effects. Blackorby and Russell (1999) and Briec et al.

(2003) have shown that things do not add up except under

restrictive conditions. Bartelsman and Doms’ (2000,

p. 571) understanding that ‘‘Aggregated productivity can

be computed as the share-weighted average of individual

productivity’’ is not exactly right. Indeed, Briec et al.

(2003, Proposition 5) and Färe and Grosskopf (2004,

p. 108) noticed a bias, ten Raa (2005) related it to the

departure of the industrial efficiency condition that mar-

ginal productivities are equalized, and Balk (2009) shows

that in a growth accounting setting with independent

disaggregated price and quantity information differential

price changes add a term to aggregate productivity change.

I now proceed to interpret the bias as an industrial orga-

nization inefficiency measure.

A main contribution of this paper is the interrelation of

productivity analysis and the theory of industrial organi-

zation. A proposition proves that an industrial organization
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is efficient (in the sense of productivity analysis) if and

only if it is supportable in Sharkey and Telser’s (1978)

sense of being entry-proof.

The closest framework is that of Li and Ng (1995), who

distinguish technical efficiency, allocatively efficiency and

reallocative efficiency; the latter corresponds to my mea-

sure of industrial organization efficiency. They measure all

efficiencies using the shadow prices of the efficiency pro-

gram of the industry as a whole, while I employ the indi-

vidual firm shadow prices for the micro efficiencies and

show that departures between the two signal organizational

inefficiency.

2 Benchmarking: price analysis

Denote firm i’s input vector by xi
= 0 and its output vector

by yi 6¼ 0; i ¼ 1; . . .; I.1 Input vectors have a common

dimension, output vectors have a common dimension, and

these two dimensions may differ (some positive integers).

For example, inputs can be labor, capital, and land, while

outputs may be numerous goods and services. Some

commodities can be both input and output. An industrial

organization can be represented by the allocation

ðxi; yiÞi¼1;...;I , which is denoted briefly by (X, Y). If I = 1,

the industrial organization is a monopoly; if I = 2, it is a

duopoly. If Y is a diagonal matrix, we have monopolistic

competition. If X is a row vector, we have an input price

taking industry, for which inputs can be aggregated to

‘cost.’ The efficiency of a firm is determined by bench-

marking its structure (xi, yi) against the industrial organi-

zation (X, Y). This is a comparison between the firm’s

actual output level and the best practice output level

achievable with its available input vector, just as Farrell’s

(1957) productive efficiency measurement technique and

Shephard’s (1970) output distance function. The idea is to

reallocate the input, xi, over all the activities j ¼ 1; . . .; I,

and to run the latter with intensities hj, as to inflate the

output, yi, by an expansion factor 1=e:2

max
e;hj � 0

1=e :
X

hjx
j� xi; yi=e�

X
hjy

j ð1Þ

Program (1) assumes that activities (xi, yi) can be run

with constant returns to scale and that inputs and outputs

are freely disposable.3 Let ei optimize primal program (1).

The expanded yi=ei is the potential output of firm i, using

the best practice technologies. ei is a number between 0 and

1 which indicates the firm efficiency for firm i. The best

practice firms or benchmarks relevant to firm i are signalled

by hj [ 0 in program (1).

Denote the shadow prices of the constraints in (1) by wi

and pi, for the inputs and outputs, respectively; these solve

the dual program:4

min
p;w� 0

wxi : py j�wx j; pyi ¼ 1; all j ð2Þ

This dual program is essentially the original tack to Data

Envelopment Analysis, taken by Charnes et al. (1979).5 The

connection between efficiency and valuations—a central

theme in this paper—is made by the main theorem of linear

programming. According to this theorem the primal and dual

programs have equal solution values:

1=ei ¼ wixi ð3Þ

Substituting the price normalization constraint of

program (2) in Eq. (3), the efficiency of firm i becomes:

ei ¼ piyi=wixi ð4Þ

This result establishes a connection between benchmark-

ing and price index measurement. The efficiency is the ratio

of the value of output to the value of input at shadow prices.

Georgescu-Roegen (1951) called it return to the dollar in a

more complicated framework, involving investment and not

necessarily shadow prices. Under constant returns to scale

the ratio should equal unity for profit maximizers. A perhaps

surprising feature is that the ratio is evaluated at private

prices, because the potential output of firm i has idiosyncratic

commodity proportions and because of the presence of

multiple inputs. For example, if the output mix of a firm is

relatively intensive in terms of some input, the shadow price

of that input will be high.

We now apply the apparatus to the efficiency of the

industry. The definition goes back to Farrell (1957) and

Førsund and Hjalmarsson (1979), who call it structural

efficiency. Related, Johansen (1972) defines potential

1 All I need are firms’ input and output data. This simplicity has a

price: I miss performance failures on the demand side. However, a

theoretical underpinning of this supply side approach is given in ten

Raa (2008), where it is demonstrated that my supply side efficiency

measure is conservative (in the sense of underestimating full

inefficiency) and sharp (attained by certain demand functions).
2 I do not surround the objective and constraints by the set symbol

{.}. I omit j ¼ 1; . . .; I under the summation model, following the

Einstein summation convention.

3 An obvious extension of this paper will be the generalization to

variable returns to scale, but this comes with integer problems (known

in the theory of contestable markets) that obscure the relationship

between the contestability and the efficiency of an industry revealed

and measured in the present paper. In other words, that generalization

better be relegated to a separate paper. Under constant returns to scale

output and input based benchmarking procedures are equivalent. The

program is linear in the nonnegative variables 1=e; hj.
4 The price normalization constraint features no slack, because the

non-negativity constraint for 1=e is non-binding (as 1=e ¼ 1 is

feasible by choice of hi = 1 and hj = 0, j = i).
5 Under the alternative scheme of input contraction, the dual would

maximize the value of output.
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industry output as a function of total input. Following Färe

and Grosskopf’s (2004) extension, the idea is to reallocate

the combined inputs of all firms, industry input x =
P

xi,

as to inflate the aggregate output vector, y =
P

yi, by an

expansion factor 1=e. Under constant returns to scale the

industry technology is the cone spanned by the firm tech-

nologies, which is the same technology as the reference

technology in the firm efficiency program (1). Hence the

only modification to the latter is the replacement of firm

resources and output target by industry resources x and

output target y:

max
e;hj � 0

1=e :
X

hjx
j� x; y=e�

X
hjy

j ð5Þ

Let e solve program (5). It is a number between 0 and 1

which indicates the industry efficiency. The best practice

firms or benchmarks relevant to the industry are signalled

by hj [ 0 in program (5). Denote the shadow prices of the

constraints in program (5) by w and p, for the inputs and

outputs, respectively; these industry prices solve the dual

program:6

min
p0;w0 � 0

w0x : p0y j�w0x j; p0y ¼ 1; all j ð6Þ

Analogous to Eq. (3), potential output increases by the

following factor:

1=e ¼ wx ð7Þ

Analogous to Eq. (4), industry efficiency becomes:7

e ¼ py=wx ð8Þ

3 Industrial organization: an efficiency measure

Extending Briec et al. (2003, Proposition 5), Färe and

Zelenyuk (2003, formula 2.12) and Färe and Grosskopf

(2004, p. 108), Proposition 1 establishes a one-sided rela-

tionship between the efficiencies of the firms and the effi-

ciency of the industry.

Proposition 1 Industry efficiency is less than the market

share weighted harmonic mean of the firm efficiencies:

e� 1=
P

si

ei, where si = pyi/py are the market shares eval-

uated at the prices determined by dual program (6).

Proof In the dual program (2), consider the socially

optimal prices p/pyi and w/pyi (which need not be privately

optimal). The denominator has been chosen as to fulfil the

price normalization constraint in program (2) and the

inequality constraint carries over from program (6). In

short, these prices are feasible with respect to program (2).

But by their suboptimality (in this private minimization

program), (w/pyi)xi C wixi or wxi� pyiwixi ¼ pyi=ei, using

Eq. (3). Summing and invoking Eq.(7) and the price

normalization constraint of (6), we obtain 1=e ¼ wx ¼
w
P

xi�
P

pyi=ei ¼
P

si=ei. Inverting, industry efficiency

becomes e� 1=
P

si

ei. h

Extending Briec et al. (2003, p. 259), the next proposition

shows that the gap is zero if and only if the private prices of

the firms coincide. The sufficiency part is reminiscent of

Koopmans (1957) result that the industry profit function

equals the sum of the firm profit functions. Proposition 2

will be used later to show that an industrial organization is

efficient if and only if it features price competition and free

entry.

Recall the formal model: Firms are represented by

nonzero input-output activities ðxi; yiÞ; i ¼ 1; . . .; I, which

can be run with constant returns to scale and free dispos-

ability. Given these data program (1) determines the firm

efficiencies ei—with private shadow prices generated by

dual program (2)—and program (5) determines industry

efficiency e—and the dual of the latter is used to define the

market shares as in Proposition 1.

Proposition 2 The industry efficiency equals the market

share weighted harmonic mean of the firm efficiencies if

and only if all relative private price vectors match.

Proof The private prices pi and wi solve program (2).

Rescale them by letting them solve min
p;w� 0

wxi : py j�

wx j; py ¼ 1, all j (normalizing against y instead of yi). If the

relative price vectors are equal, i.e. (pi, wi) are collinear,

then, by the now common normalization constraint, (pi, wi)

are equal, say (p, w). I claim these prices solve program (6).

Feasibility carries over from any of the rescaled linear pro-

grams. Suppose the prices are not optimal. Then there would

be a superior ðp�;w�Þ with p�y j�w�x j; p�y ¼ 1 and

w�x\wx. Hence w�xi\wxi for some i. This contradicts that

(p, w) solves the rescaled dual program of that firm i. Since

(p, w) are also privately optimal, the inequalities in the Proof

of Proposition 1 are binding. The bindingness of the last of

these inequalities equates industry efficiency with the har-

monic mean of the firm efficiencies. Conversely, if this

equality holds, the inequalities in the Proof of Proposition 1

are binding. Hence p/pyi and w/pyi are privately optimal.

These private prices are collinear. h

Remark There may be corner/multiple solutions. For

example, If two firms each produce one unit of output with

one unit of labor and one unit of capital, then (X, Y) =

(xi, yi)i=1,2 = (((1, 1), 1), ((1, 1), 1)) and the private input

price vectors are (w1,w2) with nonnegative w1,w2 summing

6 I prime the variables in the program to avoid confusion with the

simple notation for the optimal values.
7 Since prices are in the numerator and the denominator of formula

(8), the price normalization in (6) is a wash: it yields no effect.
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to unity. The industry prices are the same, with the same

multiplicity. When there is multiplicity, the relative price

vectors are sets and Proposition 2 shows that if these sets

are equal industry efficiency equals mean firm efficiency

(and vice versa). I am grateful to a sharp referee for letting

me complete this point.

The reason that industry efficiency is generally less than

mean firm efficiency is that the industrial organization is

suboptimal. It is a form of allocative inefficiency. Firms

better be split or merged, specialize or diversify. This will

be discussed after the defining industrial organization

efficiency. The optimal industrial organization is deter-

mined by the benchmarks in program (5). Suboptimality is

signalled by a distortion between private and social prices

(Proposition 2). The efficiency of the industrial organiza-

tion can thus be measured by the ratio of the industry

efficiency to the mean firm efficiency, or, using Proposition

1:

Definition 1 The efficiency of an industrial organization,

(X, Y), equals eIO ¼ e
P

si=ei, where si are the market

shares evaluated at the prices determined by dual program

(6).

Definition 1 frees Nesterenko and Zelenyuk (2007)’s

definition of group revenue reallocative efficiency from its

price dependence. By Proposition 1 the efficiency of an

industrial organization is a number between 0 and 1, with

the latter value representing full efficiency according to

Proposition 2. Bogetoft and Wang (2005) explore the

potential efficiency gains of a better industrial organiza-

tion, including what they call the harmony effect. Five

simple examples show the measurability.

Examples

1. Consider an industry with equally efficient firms:

ei ¼ e. Then by Proposition 1, e� 1=
P

si

ei ¼ e. Hence

industry efficiency is less than firm efficiency. The

efficiency of the industrial organization is eIO ¼ e=e.
2. Consider an industry that produces a single good from

labor and capital. Three firms each produce one unit of

output. Firm 1 uses just one unit of labor, firm 2 uses

just one unit of capital, and firm 3 uses 1/3 units of

both inputs. Since firm 1 has labor only, the technol-

ogies of firms 2 and 3 (which employ capital) are of

no use. There is no potential increase of its output. The

same conclusion holds for firm 2. Firm 3 could

reallocate its labor and capital to the technologies

employed by firms 1 and 2, respectively, but its output

would go down from 1 to 2/3. Hence no firm has scope

for an increase in output. All potential outputs are

equal to the observed outputs and, therefore, all firms

are 100% efficient. The industry, however, is not

efficient. If firms 1 and 2 would merge and adopt the

technology of firm 3, the new firm would be three

times as big as firm 3, hence produce three units of

output, which is one more than they produce using

their own technologies. Potential output is four units

(instead of three), so that the expansion factor is 4/3

and, therefore, the industry efficiency is 3/4 or only

75%. The efficiency of the industrial organization is

75/100 = 0.75 or 75%. The industry would do better if

the two specialized firms would merge. The shadow

prices differ indeed. The shadow input price of firm 1

is (1, 2). (Under this price firms 1 and 3 break even.)

The shadow input price of firm 2 is (2, 1).

3. It is straightforward to construct an example where the

industry would do better if a firm were split: Simply

substitute diseconomies of scope for the economies of

scope in Example 2, by letting firm 3 use 2/3 units of

both inputs (instead of the 1/3 in Example 2).

4. Add a fourth firm to Example 2, with the same inputs

as firm 3, but only 1/2 a unit of output. Clearly, firm 4

could produce a full unit of output (adopting the

technology of firm 3). Its efficiency is 50%. In the

present example, the outputs are 1, 1, 1, 0.5. The

market shares are 2/7, 2/7, 2/7, 1/7. The firm efficien-

cies are 100%, 100%, 100%, 50%. The harmonic mean

is 1=
P

si=ei ¼ 1=ð2=7
1:00
þ 2=7

1:00
þ 2=7

1:00
þ 1=7

0:50
Þ or 87:5%.

For the industry potential output is three for firms 1

and 2 jointly (see Example 2) and one for firms 3 and 4

each, hence five in total (instead of three and a half), so

that the expansion factor is 5/3.5 and, therefore, the

industry efficiency is 3.5/5 or only 70%. The efficiency

of the industrial organization is 70/87.5 = 0.8 or 80%.

5. Example 2 may also be varied as to have the price

variation on the output side. Consider an industry that

produces goods and services from a single input. Three

firms each use one unit of input. Firm 1 produces one

unit of the good, firm 2 produces one unit of the

service, and firm 3 produces 2/3 units of either output.

By the price normalization constraint in program (2),

firm 1 has a good price of 1. The input price is 1. The

service price must render the other two activities

unprofitable, hence be in the interval [0, 1/2]. For firm

2 the output prices are opposite.

Analogous to Nesterenko and Zelenyuk’s (2007, Prop-

osition 1) revenue property, an immediate consequence of

Definition 1 is the following.

Proposition 3 Industry efficiency is the product of

(market share weighted harmonic) mean firm efficiency and

the efficiency of the industrial organization.

Proposition 3 will enable us to refine the decomposition

of productivity growth in technical change and efficiency
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change in the next section, but first I make an observation

on the connection between the efficiency and the support-

ability of an industrial organization in a contestable market.

In a contestable market, a potential entrant can tap the

incumbents’ technology and the entry costs are zero; see

Baumol et al. (1982). Their solution concept is that of a

sustainable industrial organization. The definition of sus-

tainability involves demand conditions, but a simple,

necessary condition is Sharkey and Telser’s (1978) sup-

portability, and that is all I need.

Definition 2 An industrial organization (X, Y) is sup-

portable by price vector (p, w) if the latter renders every

incumbent firm profitable (wxi B pyi), but any potential

entrant unprofitable (
P

hjx
j B xe, ye B

P
hjy

j, hj C 0)
wxe C pye).

The next result connects the benchmark industrial

organization involving price competition plus free entry

with efficient outcomes. In fact, Proposition 4 articulates

the Baumol and Fischer (1978, p. 461) intuition that ‘‘it

would be highly surprising if there were not a rough cor-

respondence between the most economical market form

and what actually occurs’’ and extends Baumol et al.

(1982) proposition that in a sustainable industry configu-

ration total industry cost must be minimized. In Proposition

4 full industrial organization efficiency means eIO ¼ 1

(Definition 1) and full firms efficiencies that the solutions

to all programs (1) are ei ¼ 1.

Proposition 4 An industrial organization is supportable if

and only if it is fully efficient and comprises fully efficient firms.

Proof Let me first prove the only if part, which is known,

at least for given input prices. So let the industrial orga-

nization be supportable by (p, w). I claim that the

normalized supporting prices p/pyi and w/pyi solve the dual

program of an incumbent firm, (2). For this purpose,

take hj = 1 and hk = 0,k = j in Definition 2. Then

xj B xe, ye B yj) wxe C pye. In particular, wxj C pyj.

(In fact, the inequality is binding by the first condition

in Definition 2.) This shows that the first constraint in (2) is

met. The second constraint is met by the normalization by

pyi. The value of the objective function in (2) must be at

least wxi C pyi according to the first constraint in (2) with

j = i. By the first condition in Definition 2 this lower

bound pyi is not exceeded by wxi of Definition 2, which

renders the latter optimal in (2).

By Eq. (4), firm i is fully efficient. Moreover, since the

relative prices solving dual program (2) are common to all

incumbent firms, Proposition 2 applies and the industry

efficiency is also 1. Substituting these findings in Definition

1, it follows that the industrial organization must be fully

efficient.

To prove the converse, consider a fully efficient

industrial organization comprising fully efficient firms.

By Proposition 2, there is a common price vector

(p, w) such that p/pyi and w/pyi are privately optimal.

I claim that (p, w) supports the industrial organization.

By Eq. (4), wxi = pyi. Let
P

hjx
j B xe and ye BP

hjy
j,hj C 0. Then wxe C w

P
hjx

j C p
P

hjy
j C pye,

where the middle inequality holds term by term in view of the

constraints in program (2) that characterizes the privately

optimal prices. h

4 Recovery of the Solow residual

Performance will be measured by the Solow (1957)

residual, the difference between the output and input

growth rates. Both growth rates are share-weighted

expressions, using competitive valuations. In a noncom-

petitive environment the residual captures not only tech-

nical but also efficiency change. Since the latter concept is

defined by the price-free benchmarking program (1), a little

work has to be done to make the connection. Introduce

time by subscripting inputs and outputs, as well as the

derived constructs, using the symbol t. Firm i has input and

output vectors xt
i and yi

t; i ¼ 1; . . .; I. By benchmarking,

yi
t=e

i
t is derived, the potential output of firm i . Its efficiency

is indicated by ei
t, a number between 0 and 1. As a

percentage, efficiency change is:8

ECi
t ¼

d

dt
ei

t=e
i
t ð9Þ

Technical change manifests itself as a shift of the

production possibility frontier. At each point of time, the

frontier is determined by the industrial organization (xt, yt).

Program (1) determines the efficiency of firm i as a

function of (xt
i, yt

i) and (Xt, Yt), say ei
t ¼ eðxi

t; y
i
t;Xt; YtÞ.

Now the program that determines the efficiency of the

industry, (5), has precisely the same structure as that for the

firms (the only difference is that the pair of total input and

output vectors replace the role of a firm’s pair), hence the

same mapping e governs the relationship between the data

and industry efficiency: et ¼ eðxt; yt;Xt; YtÞÞ. Mapping

e has two arguments, the input-output pair that is

benchmarked, (xt
i, yt

i) in case of the firm, and the industry

constellation that determines the frontier, (Xt, Yt). Denote

the row vectors of the two respective partial derivatives of

8 The efficiency is the solution value to linear program (1), where the

data, the inputs and outputs of the firms, appear in the constraint

coefficients and bounds. The sensitivity with respect to the bounds is

given by the shadow prices (Jansen et al. 1997). The differentiability

need not be in the limited sense of functions but must be generalized

(Rockafellar 1980). The sensitivity with respect to the constraint

coefficients is differentiable (Freund 1985).
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the mapping by e1 and e2. By total differentiation, the

efficiency change of firm i is:

de

dt
ðxi

t; y
i
t;Xt; YtÞ=eðxi

t; y
i
t;Xt; YtÞ

¼ e1ðxi
t; y

i
t;Xt; YtÞ

d

dt
ðxi

t; y
i
tÞ=eðxi

t; y
i
t;Xt; YtÞ

þ e2ðxi
t; y

i
t;Xt; YtÞ

d

dt
ðXt; YtÞ=eðxi

t; y
i
t;Xt; YtÞ

ð10Þ

The measurement of technical change involves a sign

issue. If firm i stays put—(xt
i, yt

i) = constant—but potential

output increases, there must be technical progress. Now an

increase in potential output, 1=ei
t, is equivalent to a

decrease in efficiency, ei
t. Hence a negative partial

derivative with respect to the second argument—which

captures the external effect—indicates technical progress.

Indeed, if a firm is fixed, but it becomes less efficient, it

must be that the benchmarks have moved out. In short,

technical change is measured by:

TCi
t ¼ �e2ðxi

t; y
i
t;Xt; YtÞ

d

dt
ðXt; YtÞ=eðxi

t; y
i
t;Xt; YtÞ ð11Þ

Productivity growth of firm i ought to be defined

irrespective the shift of the production possibility frontier.

Productivity growth is defined by the effect of its own inputs

and outputs on the efficiency performance of the firm:

PGi
t ¼ e1ðxi

t; y
i
t;Xt; YtÞ

d

dt
ðxi

t; y
i
tÞ=eðxi

t; y
i
t;Xt; YtÞ ð12Þ

This definition of productivity growth is essentially the

Solow residual, but because of its generality (the own effect

of a firm on its efficiency, keeping the environment constant)

this must be demonstrated. Now Solow (1957) defined his

residual (applied to firm i) by pi
t

d
dt yi

t= pi
ty

i
t � wi

t
d
dt xi

t=wi
tx

i
t. His

prices are implicit in the partial derivatives of my efficiency

function. Proposition 5 makes it explicit, proving that

expression (12) equals the Solow residual.

Proposition 5 Productivity growth is measured by the

Solow residual: PGi
t ¼ pi

t
d
dty

i
t=pi

ty
i
t � wi

t
d
dtx

i
t=wi

tx
i
t.

Proof The proof is by duality analysis. Mapping e’s first

(sub)argument, xt
i, lists the bound in program (1). The

partial derivative of the objective value, 1=ei
t, with respect

to this bound is the shadow price wt
i. By the chain rule,

�1
ei2

t

oei
t

oxi
t
¼ wi

t. Mapping e’s next (sub)argument, yt
i, is a coef-

ficient in program (1). Setting up the Lagrangian function

and application of the envelop theorem yields that the

partial derivative of the objective value, 1=ei
t, with respect

to coefficient yt
i is �pi

tð1=ei
tÞ. By the chain rule,

�1
ei2

t

oei
t

oyi
t
¼ �pi

tð1=ei
tÞ. Substituting these in expression (12), we

obtain PGi
t ¼ �wi

te
i2
t ; p

i
te

i
t

� �
d
dt ðxi

t; y
i
tÞ=ei

t ¼ pi
t

d
dty

i
t

�
�ei

tw
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i
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=pi
ty

i
t ¼ pi

t
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dty

i
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ty
i
t � wi

t
d
dtx

i
t=wi

tx
i
t, by the price normalization

constraint of program (2) and Eq. (4). h

Summarizing, efficiency change is defined by (9), tech-

nical change by (11), productivity growth by (12), and the

former two sum to the latter by Eq. (10), yielding Eq. (13):

PGi
t ¼ ECi

t þ TCi
t ð13Þ

Things look only slightly different at the level of the

industry. Now industry input and output, (xt, yt), are

benchmarked against the frontier. The productivity growth

of the industry is:

PGt ¼ e1ðxt; yt;Xt; YtÞ
d

dt
ðxt; ytÞ=eðxt; yt;Xt; YtÞ ð14Þ

This expression is basically a summation of the firm

productivity growth rates, (12), with the modification that

private shadow prices have been replaced by social values.9

The price difference constitutes a wedge which is precisely

the aggregation bias uncovered by ten Raa (2005). I will

now explain the role of industrial organization in the

performance measure of productivity. Inspired by Caves

et al. (1982), Färe et al. (1994) define the Malmquist

productivity index by

Mi
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðxi

tþ1; y
i
tþ1;Xt; YtÞ

eðxi
t; y

i
t;Xt; YtÞ

�
eðxi

tþ1; y
i
tþ1;Xtþ1;Ytþ1Þ

eðxi
t; y

i
t;Xtþ1; Ytþ1Þ

s

¼
eðxi

tþ1; y
i
tþ1;Xtþ1; Ytþ1Þ

eðxi
t; y

i
t;Xt; YtÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðxi

t; y
i
t;Xt; YtÞ

eðxi
t; y

i
t;Xtþ1; Ytþ1Þ

�
eðxi

tþ1; y
i
tþ1;Xt; YtÞ

eðxi
tþ1; y

i
tþ1;Xtþ1; Ytþ1Þ

s

ð15Þ

where the second line decomposes it in efficiency change

and technical change. Similar to the firm index (15) the

industry Malmquist productivity index is:

Mt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðxtþ1; ytþ1;Xt; YtÞ

eðxt; yt;Xt; YtÞ
� eðxtþ1; ytþ1;Xtþ1; Ytþ1Þ

eðxt; yt;Xtþ1; Ytþ1Þ

s

ð16Þ

Proposition 6 The Malmquist productivity index

aggregates the change in the efficiency of the industrial

organization, firm efficiency changes, and technical change:

Mt ¼
eIO

tþ1

eIO
t

�
P

si
t=eðxi

t; y
i
t;Xt; YtÞP

si
tþ1=eðxi

tþ1; y
i
tþ1;Xtþ1; Ytþ1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eðxt; yt;Xt; YtÞ
eðxt; yt;Xtþ1; Ytþ1Þ

� eðxtþ1; ytþ1;Xt; YtÞ
eðxtþ1; ytþ1;Xtþ1; Ytþ1Þ

s

9 Indeed, if the private and social prices would match, PGt ¼
e1ðxt; yt;Xt;YtÞ

P
d
dtðxi

t; y
i
tÞ=eðxt; yt; Xt;YtÞ ¼

P
PGi

t eðxi
t; y

i
t;Xt; YtÞ

=eðxt; yt;Xt;YtÞ.
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Proposition 6 decomposes productivity growth in

technical change and efficiency change and disaggregates

the latter to the level of firms. This disaggregation involves

a bias, which is accounted for by the industrial organization

effect. The first quotient measures the change in the

efficiency of the industrial organization. Firm efficiencies

are aggregated in the second quotient by the market share

weighted harmonic mean and market shares are evaluated

at the shadow prices of the industry efficiency program (5).

The square root measures technical change.10

Proof Apply the second line of formula (15) to the

industry and substitute, using Definition 1, eðxt; yt;

Xt; YtÞ ¼ eIO
t =
P

si
t=eðxi

t; y
i
t;Xt; YtÞ and similar for e(xt?1,

yt?1, Xt, Yt). h

5 Illustration

Consider the Japanese banks (i ¼ 1; . . .; I ¼ 136) over a

five year period (t ¼ 1992; . . .; 1996).11 There are three

inputs (labor, capital, and funds from customers) and two

outputs (loans and other investments). Formally we have a

panel of inputs and outputs, (xt
i, yt

i). For the four transitions

between periods Thanh Le Phuoc has computed the

dynamic performance measure of productivity growth, and,

applying Proposition 3, its decomposition in the industrial

organization effect, firms efficiency change and technical

change. The results are in Table 1.12

The last column of Table 1 shows that total productivity

was initially stuck (0.08% growth in the period 1992–1993)

but climbed strongly (to 3.15% in the period 1995–1996);

on average it grew 1.17%. The bottom row decomposes

this figure in technical change, efficiency change and the

industrial organization effect. As usual, technical change is

the most important source of productivity growth, con-

tributing 0.85% per year. As is known from the growth

accounting literature, technical change can be negative—

see the second period. This means that the best practices

were worse than in the year before. This phenomenon is

natural in mining, but less so in banking. Tulkens and

Vanden Eeckaut (1995) redefine the frontier in terms of

current and past practices; this technique would force

technical change nonnegative and reduce efficiency

change. Efficiency change can be negative—see the first

period—but on average it augments technical change

(0.85%) with a quarter (0.21%). Industrial organization is

the third contributor to productivity growth, half the size of

efficiency change. Thus, on average, the industrial orga-

nization of Japanese banking improved in the 1990s, but as

for firms’s efficiency it can go up and down.

This is a diagnosis of the Japanese banking industry. I do

not explain the three components, but my hunch is that the

advances in electronic banking drove technical change and

the spread of ATMs enhanced efficiency. The industrial

organization remained sluggish, leaving scope for competi-

tive pressure, including changes in bankruptcy procedures.

6 Conclusion

An industry may perform better, in the sense of produc-

tivity growth, by technical progress or by efficiency

change. Both sources of growth have been decomposed in

firm contributions, but the aggregation is known to be

imperfect. The bias reflects the inefficiency of the indus-

trial organization. This paper offers measures for the latter.
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