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The aim of this paper is to solve a supplier selection problem under multi-price level and
multi-product using interactive two-phase fuzzy multi-objective linear programming
(FMOLP) model. The proposed model attempts to simultaneously minimize total purchas-
ing and ordering costs, a number of defective units, and late delivered units ordered from
suppliers. The piecewise linear membership functions are applied to represent the decision
maker’s fuzzy goals for the supplier selection and order allocation problem, and can be
resulted in more flexibility via an interactive decision-making process. To demonstrate
effectiveness of the proposed model, results of applying the proposed model are shown
by a numerical example. The analytical results show that the proposed approach is effec-
tive in uncertain environments and provide a reliable decision tool for integrated multi-
objective supplier selection problems.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In today’s competitiveness world, most organizations attempt to meet demand, increase quality, and decrease cost. In
most industries, the cost of raw materials and component parts forms the major part of production cost, e.g. up to 70%
[1]. According to Weber et al. [2], the raw material cost may increase to 80% of total cost in hi-tech production environment.
Generally, the costs of raw materials and components comprise the main quota of the final cost of a product. Selecting a
proper supplier can significantly reduce purchasing costs, decrease production lead time, increase customer satisfaction,
and strengthen corporate competitiveness [3].

In the supply chain scope, organizations should select the most appropriate suppliers for considerable products based on
production capacity of available suppliers during the planning horizon. In a value chain, suppliers have a potential capability
to increase customers’ satisfaction. Hence, the supplier selection problem (SSP) is one of critical activity of the purchasing
department in an organization and it can intensively affect other processes within organization. In this problem, the number
and type of supplier, and the order quantities allocated to these suppliers should simultaneously be determined. Indeed,
selection of suppliers and allocation of orders’ quantity to each selected supplier are strategic purchasing decisions [4].

Regarding how many suppliers can be considered to supply the required materials, the supplier selection problem can be
categorized into two types as follows [5]:

� Selecting the best supplier from the pool of available suppliers that can satisfy all buyer’s requirements such as demand,
quality, and delivery, etc. (single sourcing).
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� Selecting two or more suppliers to meet demands as none of suppliers can individually meet all buyers’ requirements
(multiple sourcing). In such situation, we face order allocation problem where the best suppliers should be selected
and the optimal order quantities should be assigned to each of them.

Deciding on the order allocation is a strategic purchasing decision that will impact the firm’s relationship with suppliers
[4]. In multiple sourcing, the buyer has an opportunity to receive lower prices and shipping costs from a multiple-sourcing
strategy [6]. Selecting suppliers provide the lowest price in a given industry is a challenge for purchasing managers, specif-
ically when suppliers offer multiple products and volume-based discount pricing schedules [7]. In such case, the supplier
offers discounts on the total quantity of sales volume in a given period of time. In general, purchasing multiple items from
a supplier [8] and quantity discounts [9] represent a standard business practice.

Since different criteria can be considered during the decision making process for Supplier selection decision, this problem
is a more complex in presence of volume discounts and multiple items. These criteria include qualitative and quantitative
factors. Therefore, this problem is important for purchasing managers and they should determine the trade-off among the
several factors. Improper selection of suppliers may unfavorably affect the company’s competiveness strategy. Thus, this
problem is naturally a multi-objective decision-making problem with several conflicting factors such as cost, quality, and
delivery. Mathematical programming techniques can be applied to determine the optimal solutions of this problem where
the criteria are formulated as the objective functions or constraints.

In practice, decision-making in SSP includes a high degree of different types of fuzziness [10]. In real-world SSPs, the input
information (e.g. demand, quality, and cost) and the objective function are often uncertain or fuzzy since most of the input
information is not precisely known or complete or achievable. The fuzzy set theory is one of the best tools to handle uncer-
tainty and vagueness. Obviously, traditional mathematical programming cannot handle the fuzzy programming problems.
The supplier selection model of the present paper under multiple products and multiple price levels represents the role
of fuzzy theory where information, objective functions and parameters are imprecise.

The fuzzy sets theory was initially introduced by Zadeh [11]. Zimmermann [12,13], first extended his fuzzy linear pro-
gramming (FLP) approach to a conventional multi-objective linear programming (MOLP) problem. For each objective func-
tions of this problem, assume that the decision maker (DM) has a fuzzy goal such as ‘the objective functions should be
essentially less than or equal to some value’. Then, the corresponding linear membership function is defined and the min-
imum operator proposed by Bellman and Zadeh [14] is applied to combine all the objective functions. By introducing aux-
iliary variables, this problem can be transformed into an equivalent conventional LP problem and can easily be solved by the
simplex method. Subsequent works on fuzzy goal programming (FGP) include Hannan [15], Leberling [16], Luhandjula [17],
and Shanker and Vrat [18].

Due to the inherent conflict among the three objectives total purchasing and ordering costs, the number of defective units
and late delivered units ordered from suppliers, a fuzzy goal programming approach is proposed in the current research to
solve an extended mathematical model of a SSP under multi-price level and multi-product.

The present paper aims to develop an interactive fuzzy multi-objective linear programming (FMOLP) model to solve the
multi-objective SSP under multi-price level and multi-product in the fuzzy environment. To do so, an MOLP model of a mul-
ti-objective SSP under multi-price level and multi-product is firstly constructed. The model attempts to minimize the total
purchasing and ordering costs, the numbers of defective units and late delivered units ordered from suppliers. Then, the
model is converted into an FMOLP model by an integration fuzzy sets concept and multiple objective programming
approaches.

The remaining of the current paper is structured as follows: Section 2 describes the literature review related to supplier
selection and order allocation problem. In Section 3, the MOLP mathematical formulation model of SSP under multi-price
level and multi-product is presented. In Section 4, Interactive two-phase FMOLP mathematical models are developed to gen-
erate optimal solutions in the fuzzy environment of the problem. Section 5 presents a numerical example and reports the
results of computational experiments to demonstrate the efficiency of the proposed interactive two-phase FMOLP model
for supplier selection and order allocation problem under multi-price level and multi-product. Finally, conclusion part of
the present paper is presented in Section 6.
2. Literature review

Researchers have introduced and examined different criteria for the supplier selection problem since 1960s. Dickson [19]
identified 23 criteria based on a survey of 170 purchasing managers involved in various SSPs. The criteria such as price, deliv-
ery performance, and quality were the most important criteria in evaluating suppliers. Weber et al. [2] reviewed 74 articles
to catch supplier selection criteria. They also concluded that the important criteria are quality, delivery performance and
cost. They stressed that supplier selection not only depend on the criterion cost, but also it would depend on other criteria
such as quality and delivery performance.

Many papers in the literature have investigated supplier selection and evaluation methods [20]. De Boer et al. [21] and Ho
et al. [22] conducted a comprehensive survey of methods used for solving SSP. In this section, direction of literature review
will essentially be conducted in the mathematical programming models used for supplier selection and order allocation
decisions.
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Among 78 journal articles studied by Ho et al. [22], only nine papers (11.54%) formulated the supplier selection problem
in form of various mathematical programming models. Hong and Hayya [23] formulated the multiple sourcing as a
mathematical model and solved it to obtain the optimal solution of suppliers and the size of the split orders. Talluri and
Narasimhan [24] proposed a linear programming model based on data envelopment analysis (DEA) for effective supplier
sourcing where multiple strategic and operational factors in the evaluation process are considered. Ng [25] developed a
weighted linear programming model for the multi-criteria supplier selection problem.

Different mixed-integer programming approaches have been applied by researchers for the SSP. Talluri [26] presented a
binary integer linear programming model in selecting an optimal set of bids that satisfy the buyer’s demand requirements to
evaluate supplier bids based on the ideal targets set by the buyer. Hong et al. [27] developed a mixed-integer linear program-
ming model for the SSP. The outputs of the Hong et al. [27]’ model were the optimal number of suppliers, and the optimal
order quantity to maximize revenue while satisfying the procurement condition and maintaining the supplier-relationship
for a longer time period. Ghodsypour and O’Brien [28] developed a mixed integer non-linear programming model taking into
account the total logistics costs (net price, storage, transportation, and ordering costs) and the buyer limitations (budget,
quality, service, etc.) to solve the multiple sourcing problems. Basnet and Leung [29] developed a mixed integer program-
ming model to solve the SSP with multi-period multi-product lot sizing. The objective function included the transaction cost,
the purchasing cost, and holding cost for each product in the inventory in each period.

Order quantities with quantity discounts problem has studied from the point of view of supplier selection and order
quantity allocation by Bender et al. [30], Chaudhry et al. [31], Ghodsypour and O’Brien [5], Amid et al. [32]. Chaudhry
et al. [31] formulated a linear mixed-integer programming model to minimize the aggregate price by considering both
cumulative and incremental discount. The selection process was influenced by the price, delivery, and quality objectives
of the buyer, as well as by the production or rationing constraints of vendors.

It is well known that the optimal solution of single-objective models can be quite different from the models consisting of
multiple objectives. In fact, the decision maker (DM) often wants to minimize the total purchasing and ordering costs, the net
number of rejected items from the suppliers and the net number of late delivered items. Each of these objectives is valid from
a general point of view. Since these objectives conflict with one another, a solution may perform well for one objective but
may give inferior results for others. For this reason, SSP problems have a multi-objective nature [3]. As mentioned, since con-
sidering one criterion rarely occurs in practice (single objective function), MOLP is a suitable approach to solve the SSP with
taking account into quantity discount.

The multi-objective programming techniques in evaluating suppliers in multiple sourcing problems have not received as
much attention as single objective problem in single sourcing problem in the literature [4]. Weber and Current [33] pre-
sented a multi-objective approach to systematically analyze the inherent tradeoffs involved in multi-criteria supplier selec-
tion problems. Weber et al. [34] presented an approach based on multi-objective programming and data envelopment
analysis to determine the number of suppliers in a multi-vendor and single product purchasing environment. Xia and Wu
[35] proposed an integrated approach of analytical hierarchy process improved by rough sets theory and multi-objective
mixed integer programming simultaneously determine the number of suppliers to employ and the order quantity allocated
to these suppliers in the case of multiple sourcing, multiple products, with multiple criteria and with supplier’s capacity con-
straints. These models have not considered price discount or multi-price level.

Narasimhan et al. [36] proposed a multi-objective programming model for dealing with the problem in multi-product and
discount environment (multi-price level) environment while considering the competitive bidding mechanism for supplier
selection. Wadhwa and Ravindran [37] modeled the SSP as a multi-objective optimization problem, where price, lead-time,
and rejects are explicitly considered as the three conflicting criteria to be minimized simultaneously. Because the real cases
are actually full of ambiguities or in simplest term fuzzy, some authors have combined the fuzzy set theory to handle such
uncertainties and ambiguities.

Amid et al. [38] proposed a FMOLP model (weighted additive) for SSP to tackle with information’s vagueness and to help
decision makers to find out the appropriate ordering from each supplier. Amid et al. [32] formulated the SSP under price
breaks in a supply Chain. Their model included three objective functions minimizing the net cost, minimizing the net re-
jected items, and minimizing the net late deliveries, while satisfying capacity and demand requirement constraints. Amid
et al. [39] developed a simple weighted max–min fuzzy model for a fuzzy multi-objective SSP which taking into account
the cost, quality, and service. Kumar et al. [40] formulated the SSP as a fuzzy mixed integer goal programming with three
primary goals minimizing the net cost, minimizing the net rejections, and minimizing the net late deliveries subject to real-
istic constraints regarding the buyer’s demand, vendors’ capacity, vendors’ quota flexibility, purchase value of items, bud-
get allocation to individual vendor, etc. Esfandiari and Seifbarghy [41] proposed a multi-objective model for supplier
quota allocation problem while demand was dependent on the offered price by suppliers. They solved their models using
genetic algorithm and simulated annealing. Lee et al. [42] tried to construct a lot-sizing model with multi-suppliers and
quantity discounts to minimize total cost over the planning horizon as a single-objective problem. The objective was to min-
imize total costs, where the costs include ordering cost, holding cost, purchase cost, and transportation cost.

As it is evident in the literature, most studies have rarely paid attention to SSP models that simultaneously consider
uncertainty in information (incompleteness) and several conflicting criteria under conditions of multiple product and dis-
count environment (multi-price level) environment and multiple sourcing. The main purposes of this paper are outlined:
(1) to propose an extended mixed-integer linear programming model including new aspects of suppliers that offer various
price levels for selling their products, new aspects of buyers that want to consider several conflicting criteria such as min-
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imizing total purchasing and ordering costs, the net number of rejected items, and net number of late delivered items or-
dered from suppliers subject to real constraints regarding buyer’s demand, suppliers’ capacity, suppliers’ quota flexibility,
and purchase value of items, (2) Due to the inherent conflict of the three objectives consisting of the total purchasing and
ordering costs, the net number of rejected items from the suppliers, and the net number of late delivered items, we propose
an interactive two-phase fuzzy multi-objective linear programming approach to solve an extended mathematical model of a
supplier selection and order allocation problem.
3. Model development

The SSP is typically a MOLP problem [43]. Any decision maker often wants to optimize his/her criterion of interest. Also,
each objective may have a desired range of aspiration value with different accomplishment price level. Hence, in this section,
we tend to model the SSP as a MOLP problem.

The SSP considered in the current paper is as follows: given a set of suppliers offer multi-price levels for multi-product(s),
the buyer seeks the pareto optimal solution that minimizes total purchasing and ordering costs, the net number of rejected
items, the net number of late delivered items to allocate orders of items while satisfy a set of constraints such as overall de-
mand of all items, capacity of the each supplier for each items, flexibility needed with the suppliers’ quota, rating value of
supplier, and service level on each item from the supplier.

Assumptions, decision variables, and parameters considered in the model are as follows:

(i) Shortage of each item is not allowed from each supplier.
(ii) One or more items can be supplied from each supplier.

(iii) Quantity discount is offered by each supplier.
(iv) Demand of the items, unit cost, price and other considered parameters are all constant and known.
(v) Capacity of each supplier is finite.

3.1. Notations

The following notations are used to describe the SSP.
Index set
i: Index of items, i = 1,2, . . . ,m;
j: Index of suppliers, j = 1,2, . . . ,n;
k: Index of a price level offered by the jth suppliers, k = 1,2, . . . ,mj;
l: Index of objectives, for all l = 1,2, . . . ,L;
Parameters
m: Number of total items for planning;
n: Number of total suppliers for ordering;
ni: Maximum number of potential suppliers for the ith item;
mj: Maximum number of available price level of the jth supplier;
Di: Total demand of the ith item;
bijk: Upper limit purchased volume for the ith item of the jth supplier at the kth price level, 0 ¼ bij0 < bij1 < L < bij;mj

;
pijk: Unit price ith item of jth supplier at kth price level;
oij: Ordering cost for ith item of jth supplier;
qijk: Percentage of rejected unites in ith item of jth supplier at kth price level;
dijk: Percentage of late delivered unites of ith item ordered jth supplier at kth price level;
cij: Capacity of jth supplier for ith item.
fij: Flexibility of supplier quota allocation of jth supplier for ith item;
Fi: Lower bound of quota flexibility required by ith item;
sij: Service level of jth supplier for ith item;
Si: Lower bound of service level required for ith item;
rij: Rating value of jth supplier for ith item;
Ri: Lower bound of rating value on ith item;
Decision variables
xijk: Number of ith item ordered from jth supplier at kth price level
yijk ¼
1 if item i provided by supplier j at level k;

0 otherwise:

�

yj ¼
1 if at least one item is provided by supplier j;

0 no any item is provided by supplier j:

�
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3.2. Mathematical model

In the current paper, the objective is to solve a SSP under multi-product and multi-price level with minimizing total pur-
chasing and ordering costs (i.e., Z1), the net number of rejected items from the suppliers (i.e., Z2), the net number of late deliv-
ered items (i.e., Z3). These objectives were considered most often in the SSP’s literature Weber and Current [33].
Min Z1 ¼
Xm

i¼1

Xni

j¼1

Xmj

k¼1

pijkxijk þ
Xm

i¼1

Xn

j¼1

oijyj; ð1Þ

Min Z2 ¼
Xm

i¼1

Xni

j¼1

Xmj

k¼1

qijkxijk; ð2Þ

Min Z3 ¼
Xm

i¼1

Xni

j¼1

Xmj

k¼1

dijkxijk: ð3Þ
Subject to
Xni

j¼1

Xmj

k¼1

xijk ¼ Di; i ¼ 1;2; . . . ;m; ð4Þ

1� yijk 6 xijk 6 cijyijk; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;ni; k ¼ 1;2; . . . ;mj; ð5Þ

Xmj

k¼1

yijk 6 1; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ; ni; ð6Þ

Xni

j¼1

fij

Xmj

k¼1

xijk P FiDi; i ¼ 1;2; . . . ;m; ð7Þ

Xni

j¼1

sij

Xmj

k¼1

xijk P SiDi; i ¼ 1;2; . . . ;m; ð8Þ

Xni

j¼1

rij

Xmj

k¼1

xijk P RiDi; i ¼ 1;2; . . . ;m; ð9Þ

bij;k�1yijk 6 xijk 6 bijkyijk; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;ni; k ¼ 1;2; . . . ;mj; ð10Þ

yj 6
Xm

i¼1

Xmj

k¼1

yijk 6 myj; j ¼ 1;2; . . . ; nj; ð11Þ

xijk P 0 and integer; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ; ni; k ¼ 1;2; . . . ;mj; ð12Þ

yijk and yj 2 f0;1g: ð13Þ
Constraint (4) shows a constraint on the overall demand of each item. This constraint also guarantees that the overall
demand on all the items must be met. Constraint (5) specifies the limitation of supply capacity for each supplier. Constraint
(6) shows that only one or none price level can be chosen to order if item i is purchased from supplier j. Constraints (7)–(9)
represent that the quota flexibility, service level and rating values must exceed a given level. Constraint (10) describes that a
quantity ordered from the supplier at a given price level within the level interval offered. Constraint (11) means all the prod-
ucts purchased from the same supplier are placed in one order (for calculating ordering cost in objective function (1)).

4. Interactive two-phase fuzzy multi-objective linear programming (FMOLP) model

The original MOLP model can be converted to an interactive two-phase FMOLP model using the piecewise linear mem-
bership function given in Hannan [15] in order to represent the fuzzy goals of the DM in the MOLP model given in Bellman
and Zadeh [14]. In general, a piecewise linear membership function given in Bellman and Zadeh [14] can be suggested in
order to convert the problem to be solved into an ordinary LP problem. The algorithm includes the following steps:
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4.1. Algorithm

Step 1: Specifying a degree of a membership function for several values of each objective function Zl (l = 1–3) (see Table 1).
Step 2: Drawing the piecewise linear membership function.
Step 3: Formulating the linear equations for each of the piecewise linear membership functions fl (Zl) (l = 1–3).
The intervals for possible values of each objective function Zl was specified by the user as ½Tl;v lþ1; Tl0� implicating a piece-

wise membership function (see Table 1). In generally, piecewise membership functions can be divided into two main inter-
vals. The first interval, ½0; Tl;v lþ1�, represents ‘‘risk free’’ values in the sense that a solution should almost be implementable
and realistic. On the other hand, the second interval, ½Tl;v lþ1; Tl0�; represents ‘‘full risk’’ values that are most certainly unreal-
istic, impossible, and the solution obtained by these values is not implemental. While moving from ‘‘risk free’’ toward ‘‘full
risk’’ values, it is moved from solutions with a high degree to those with a low degree [44]. In general, Tl;v lþ1 and Tl0 indicate
the optimistic and pessimistic viewpoints of the DM, respectively.

Step 3.1: Converting the membership functions fl (Zl) into the form
Table 1
Membe

Z1

f1(Z1

Z2

f2(Z2

Z3

f3(Z3

Note: ð0
flðZlÞ ¼
XPi

b¼1

albjZl � Tlbj þ blZl þ hl; l ¼ 1—3; ð14Þ
where
alb ¼ �
cl;bþ1 � cl

2
; bl ¼

cl;Vlþ1 þ cl1

2
; hl ¼

Sl;Vlþ1 þ Sl1

2
: ð15Þ
Assume that flðZlÞ ¼ clrZl þ Slr for each segment Tl;r�1 6 Zl 6 Tlr; where clr denotes the slope and Slr is the y-intercept of the
line segment on [Tl, r-1, Tlr] in the piecewise linear membership function. Hence, we have:
flðZlÞ ¼ �
cl2 � cl1

2

� �
jZl � Tl1j �

cl3 � cl2

2

� �
jZi � Ti2j � � � � �

cl;Vlþ1 � clV l

2

� �
jZl � Tlv l

j þ
cl;Vlþ1 þ cl1

2

� �
Zl

þ
Sl;Vlþ1 þ Sl1

2
;

cl;bþ1 � clb

2

� �
–0; l ¼ 1;2;3; b ¼ 1;2; . . . ;Vl; ð16Þ
where
cl1 ¼
ul1 � 0

Tl1 � Tl0

� �
; ci2 ¼

ul2 � ul1

Tl2 � Tl1

� �
. . . cl;Vlþ1 ¼

1� ulVl

Tl;Vlþ1 � TlVl

� �
: ð17Þ
Vl is the number of broken points of the lth objective function and Sl;Vlþ1 is the y-intercept for the section of the line seg-
ment on ½Tlv l

; Tl;v lþ1�
Step 3.2: Introducing the following nonnegative variables.
Zl þ d�lb � dþlb ¼ Tlb; l ¼ 1—3; b ¼ 1;2; . . . ;Vl; ð18Þ
where dþlb and d�lb denote the deviational variables in positive and negative directions at the lth point and Tlb represents the
values of the lth objective function at the lth point.

Step 3.3: Substituting equation (18) into (16) yields the following equation.
flðZlÞ ¼ �
cl2 � cl1

2

� �
ðd�l1 � dþl1Þ �

cl3 � cl2

2

� �
ðd�l2 � dþl2Þ � � � � �

cl;Vlþ1 � clVl

2

� �
ðd�lVl

� dþlVl
Þ

þ
cl;Vlþ1 � cl1

2

� �
Zl þ

Sl;Vlþ1 þ Sl1

2
; l ¼ 1—3: ð19Þ
Step 4: Applying the two-phase approach to introduce the auxiliary variable u and then the problem can be transformed
into the equivalent ordinary LP problem. The variable u can be interpreted as representing an overall degree of satisfaction
with the DM’s multiple fuzzy goals.
rship function flðZlÞ .

>T10 T10 T11 T12 .. . T1v1 T1v1þ1 <T1v1þ1

) 0 0 u11 u12 .. . u1v1 1 1
>T20 T20 T21 T22 .. . T2v2 T2v2þ1 <T2v2þ1

) 0 0 u21 u22 .. . u2v2 1 1
>T30 T30 T31 T32 .. . T3v3 T3v3þ1 <T3v3þ1

) 0 0 u31 u32 .. . u3v3 1 1

6 ulb 6 1;ulb 6 ulbþ1; l ¼ 1—3; b ¼ 1;2; . . . ; v lÞ.
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Phase 1: Using the max–min operator [14] and u0 satisfaction degree, the FMOLP problem can be solved as a single objec-
tive problem:
Max u0 ð20Þ
s.t.
u0 6 �
cl2 � cl1

2

� �
ðd�l1 � dþl1Þ �

cl3 � cl2

2

� �
ðd�l2 � dþl2Þ � � � � �

cl;Vlþ1 � clV l

2

� �
ðd�lV l

� dþlVl
Þ

þ
cl;Vlþ1 þ cl1

2

� �
Zl þ

Sl;Vlþ1 þ Sl1

2
; l ¼ 1—3: ð21Þ

Zl þ d�lb � dþlb ¼ Ylb; l ¼ 1—3; b ¼ 1;2; . . . ;Vl: ð22Þ
Constraints (4)–(13).
Phase 2: Applying the result of the previous model to overcome disadvantages of phase 1. In this phase, the solution is

forced to get improved and modified upon and dominate the solution of max–min operator, adding constraints and a new
auxiliary objective function to phase 2 to achieve at least the satisfaction degree obtained in phase 1. The proposed phase
2 of the problem is as follows: !
Max
1
3

X3

l¼1

ul ð23Þ
s.t.
u0 6 ul

6 � cl2 � cl1

2

� �
ðd�l1 � dþl1Þ �

cl3 � cl2

2

� �
ðd�l2 � dþl2Þ � � � � �

cl;Vlþ1 � clV l

2

� �
ðd�lV l

� dþlVl
Þ þ

cl;Vlþ1 þ cl1

2

� �
Zl

þ
Sl;Vlþ1 þ Sl1

2
; l

¼ 1—3: ð24Þ

Zl þ d�lb � dþlb ¼ Ylb; l ¼ 1—3; b ¼ 1;2; . . . ;Vl: ð25Þ
Constraints (4)–(13).
Step 5: Executing and modifying the interactive decision process. If the DM is not satisfied with the initial solution, the

model must change until finding a satisfactory solution.
Fig. 1 illustrates the block diagram of the interactive two-phase FMOLP model development.

5. Numerical example and performance analysis of interactive two-phase FMOLP

5.1. Basic data for numerical example

In this section, a numerical example and its solutions are presented to show the superiority of the proposed model. Sup-
pose a buyer plans to purchase five items (products) from four suppliers. Each supplier can provide three to four types items.
Table 2 shows the parameters related to the SSP discussed in the current paper such as suppliers’ capacity and demand for
each item. Three price levels are considered for each supplier in the numerical example. Tables 2 and 3 summarize the data
used for numerical example.

5.2. Formulate the interactive two-phase FMOLP model

First, initial solutions for each objective function are determined using the conventional mixed integer linear model. Re-
sults are obtained by Z1 = 1846 and Z2 = 163, Z3 = 39.3. Then, we formulate the FMOLP model using the initial solutions and
the MOLP model presented in Section 4. Table 4 gives the piecewise linear membership functions of the proposed model for
the SSP considered in the numerical example. Figs. 2–4 illustrate the corresponding shapes of the piecewise linear member-
ship functions for the numerical example.

Phase 1: Complete FMOLP model using the max–min operator. The crisp formulation of the FMOLP for the SSP in the
numerical example can be as follows:
Max u0 ð26Þ
s.t.  !

u0 6 �0:0000654ðd�11 � dþ11Þ � 0:0000327ðd�12 � dþ12Þ � 0:0002287�

Xm

i¼1

Xni

j¼1

Xmj

k¼1

pijkxijk þ
Xm

i¼1

Xn

j¼1

oijyj þ 6:5846; ð27Þ



Table 2
Collected data for numerical example.

Items Di Suppliers oij($) qijk (%) dijk (%) cij Fi (%) Si (%) Ri (%) fij (%) sij (%) rij (%)

1 700 1 800 4 1 1300 2 90 84 3 94 92
2 750 3 2 1100 2 90 95
3 600 4 1 1000 2 94 90
4 650 3 2 900 5 94 96

2 600 1 800 4 2 1400 2 88 89 3 91 95
3 600 2 3 1400 3 95 96
4 650 1 2 1400 4 96 96

3 450 2 750 2 2 1300 2 85 91 5 95 91
3 600 5 1 1200 4 95 92

4 400 1 800 2 3 1000 3 92 84 4 92 93
2 750 1 3 1000 4 92 93
3 600 1 4 1100 1 95 92
4 650 0 2 800 1 94 93

5 380 1 800 2 1 1200 2 90 88 4 91 90
2 750 2 2 1300 4 96 91

Table 3
Quantity level and price offered by each supplier.

Items Suppliers bij0 pij1($) bij1 pij2($) bij2 pij3($)

1 1 0 18 100 17.5 200 17
2 0 17 120 16.5 220 16
3 0 15 150 14.5 300 14
4 0 16 90 15.5 180 15

2 1 0 6.5 80 6 170 5.5
3 0 4 60 3.5 190 3
4 0 5 90 4.5 210 4

3 2 0 10 75 9.5 180 9
3 0 11 60 10.5 130 10

4 1 0 8 100 7.5 180 7
2 0 12 150 11.5 300 11
3 0 10 90 9.5 160 9
4 0 13 150 12.5 240 12

5 1 0 6 120 5.5 220 5
2 0 5 100 4.5 200 4

Start

Formulate the MOLP model for 
SSP

Specify the degree of membership 
for each Zl (l=1,2,3) 

Draw the piecewise linear 
membership function for each (Zl, 

fl (Zl)) (l=1,2,3)

Formulate the linear equations for 
each fl (Zl) (l=1,2,3) 

Modify the model 

Transformed into the equivalent 
conventional problem, Maxϕ

Solve the FMOLP model

Is the solution acceptable for DM? Stop

No Yes

Fig. 1. The block diagram of the interactive two-phase FMOLP model development.
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Table 4
Membership functions for numerical example.

Z1 >27910 27910 26380 24850 23320 <23320
f1(Z1) 0 0 0.5 0.8 1 1

Z2 >89 89 75 61 47 <47
f2(Z2) 0 0 0.4 0.7 1 1

Z3 >51 51 47 43 39 <39
f3(Z3) 0 0 0.4 0.7 1 1

0

0.2

0.4

0.6

0.8

1

22000 23000 24000 25000 26000 27000 28000 29000 30000

Fig. 2. Shape of membership function (Z1, f1 (Z1)).

Fig. 3. Shape of membership function (Z2, f2 (Z2)).
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Fig. 4. Shape of membership function (Z3, f3 (Z3)).
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Xmj
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 !
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Constraints (4)–(13).
In Constraints (18)–(21), d�11; d

þ
11; d

�
12; d

þ
12; d

�
21; d

þ
21; d

�
31 and dþ31 denote the deviational variables at the first, second, and

third points. In addition, 26380(T11), 24850(T12), 75(T21) and 47(T31) represent the values of the first, second, and third objec-
tive function at the first and second point.

The GAMS software system is used to run the FMOLP model for the objectives as Z1 = 25165.5, Z2 = 57.81, Z3 = 41.56, and
the overall degree of satisfaction (u0) with the DM’s multiple fuzzy goals as 0.761.

After getting the optimal solution from phase 1, according to the optimal objective function value u0 can be used in phase
2. The equation below represents the proposed FMOLP for the SSP in the numerical example that is transferred from phase 1.
Max uTotal ¼
1
3
ðu1 þu2 þu3Þ; ð34Þ
s.t.
0:761 6 u1

6 �0:0000654ðd�11 � dþ11Þ � 0:0000327ðd�12 � dþ12Þ � 0:0002287�
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Constraints (4)–(13).

5.3. Output solutions

The GAMS software system is used to run the proposed interactive two-phase FMOLP model on an Intel� 2.4 GHZ Pro-
cessor with 4 GB RAM. The results for the numerical example are as follows: Z1 = 24606, Z2 = 56.81, Z3 = 42.18. In addition,
the overall degree of satisfaction with the DM’s multiple fuzzy goals is 0.794. Table 5 presents computational solutions of the
numerical example for each decision variable within 0.785 s of CPU times.

To manipulate different alternatives for the purpose of sensitivity analysis of decision parameters, the interactive two-
phase FMOLP model of the preceding numerical example is subjected to the following five scenarios:
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� Scenario 1: Remove Z3 (the net number of late delivered items) and consider only Z1 (total purchasing and ordering costs)
and Z2 (the net number of rejected items) simultaneously.
� Scenario 2: Remove Z2 (the net number of rejected items) and consider only Z1 (total purchasing and ordering costs) and

Z3 (the net number of late delivered items) simultaneously.
� Scenario 3: Set (Z2, f2 (Z2)) and (Z3, f3 (Z3)) to their original values in the numerical example and vary (Z1, f1 (Z1)). Table 6

presents the data and results of implementing Scenario 3.
� Scenario 4: Set (Z1, f1 (Z1)) and (Z3, f3 (Z3)) to their original values in the numerical example and vary (Z2, f2 (Z2)). Table 7

presents the data and results of implementing Scenario 4.
� Scenario 5: Set (Z1, f1 (Z1)) and (Z2, f2 (Z2)) to their original values in the numerical example and vary (Z3, f3 (Z3)). Table 8

presents the data and results of implementing Scenario 5.

Table 9 presents the results of implementing scenarios 1 and 2. Tables 10–12 present the results of simultaneously imple-
menting scenario 3–5.

Significant managerial implications regarding the practical applications of the proposed model are as follows:

(1) Comparing scenarios 1 and 2 for the numerical example (run # 3 in scenarios 3–5) demonstrates the trade-offs and
conflicts among dependent objective functions. Consequently, the proposed model can satisfy the requirement for
the practical application because it aims to minimize total purchasing and ordering costs, the net number of rejected
items, and the net number of late delivered items (see Tables 9–12).

(2) The results of scenarios 3–5 show that the overall level of satisfaction and output solutions for each decision variable
strongly is affected by the specific degree of membership for each objective function. Indeed, we can propose two sig-
nificant implications. First, the most important task of the DM is to determine the rational degree of membership for
each objective function; second, the DM may arbitrarily modify the range of values of the degree of membership to
yield satisfactory solutions. Fig. 5–8 depict the changes for uTotal and objectives values of scenarios 3–5, respectively.

(3) The proposed interactive two-phase FMOLP method is based on Hannan’s [15] fuzzy programming method, which,
assuming that the DM finds the minimum operator a suitable operator for making a decision, aggregates fuzzy sets
using logical ‘and’ operations. It follows that the maximization of two or more membership functions is best com-
pleted by maximizing the minimum membership degree. The original fuzzy multi-objective SSP formulated in our
work is converted into an equivalent ordinary LP form by the minimum operator to aggregate all fuzzy sets. Hence,
the proposed interactive two-phase FMOLP method is preferable where the DM seeks to make optimal values of mem-
bership function approximately equal or the DM decides that the minimum operator is suitable for the problem.
Table 5
FMOLP model solutions.

Objective function
values

Z1 = 24606, Z2 = 56.81, Z3 = 42.18

xijk x111 = 0, x112 = 0, x113 = 0, x121 = 0, x122 = 0, x123 = 0, x131 = 0, x132 = 0, x133 = 700, x141 = 0, x142 = 0, x143 = 0;
x211 = 0, x212 = 0, x213 = 0, x231 = 0, x232 = 0, x233 = 0, x241 = 0, x242 = 0, x243 = 600; x321 = 0, x322 = 0, x323 = 421, x331 = 29,

x332 = 0, x333 = 0;
x411 = 0, x412 = 0, x413 = 0, x421 = 0, x422 = 0, x423 = 0, x431 = 267, x432 = 0, x433 = 700, x441 = 133, x442 = 0, x443 = 0;

x511 = 0, x512 = 0, x513 = 380, x521 = 0, x522 = 0, x523 = 0;
Degree of satisfaction uTotal ¼ 0:794;u1 ¼ 0:832, u2 ¼ 0:79, u3 ¼ 0:761

Table 6
Data of scenario 3.

Z2 >89 89 75 61 47 <47 Original levels

f2(Z2) 0 0 0.4 0.7 1 1

Z3 >51 51 47 43 39 <39 Original levels
f3(Z3) 0 0 0.4 0.7 1 1

Run 1 Z1 >24850 24850 23320 21790 20260 <20260
f1(Z1) 0 0 0.5 0.8 1 1

Run 2 Z1 >26380 26380 24850 23320 21790 <21790
f1(Z1) 0 0 0.5 0.8 1 1

Run 3 Z1 >27910 27910 26380 24850 23320 <23320 Original levels
f1(Z1) 0 0 0.5 0.8 1 1

Run4 Z1 >29440 29440 27910 26380 24850 <24850
f1(Z1) 0 0 0.5 0.8 1 1

Run 5 Z1 >30970 30970 29440 27910 26380 <26380
f1(Z1) 0 0 0.5 0.8 1 1



Table 7
Data of scenario 4.

Z1 >27910 27910 26380 24850 23320 <23320 Original levels
f1(Z1) 0 0 0.5 0.8 1 1

Z3 >51 51 47 43 39 <39 Original levels
f3(Z3) 0 0 0.4 0.7 1 1

Run 1 Z2 >61 61 47 33 19 <19
f2(Z2) 0 0 0.4 0.7 1 1

Run 2 Z2 >75 75 61 47 33 <33
f2(Z2) 0 0 0.4 0.7 1 1

Run 3 Z2 >89 89 75 61 47 <47 Original levels
f2(Z2) 0 0 0.4 0.7 1 1

Run4 Z2 >103 103 89 75 61 <61
f2(Z2) 0 0 0.4 0.7 1 1

Run 5 Z2 >117 117 103 89 75 <75
f2(Z2) 0 0 0.4 0.7 1 1

Table 8
Data of scenario 5.

Z1 >27910 27910 26380 24850 23320 <23320 Original levels
f1(Z1) 0 0 0.5 0.8 1 1

Z2 >89 89 75 61 47 <47 Original levels
f2(Z2) 0 0 0.4 0.7 1 1

Run 1 Z3 >43 43 39 35 31 <31
f3(Z3) 0 0 0.4 0.7 1 1

Run 2 Z3 >47 47 43 39 35 <35
f3(Z3) 0 0 0.4 0.7 1 1

Run 3 Z3 >51 51 47 43 39 <39 Original levels
f3(Z3) 0 0 0.4 0.7 1 1

Run4 Z3 >55 55 51 47 43 <43
f3(Z3) 0 0 0.4 0.7 1 1

Run 5 Z3 >59 59 55 51 47 <47
f3(Z3) 0 0 0.4 0.7 1 1

Table 9
Results of implementation the Scenario 1 and Scenario 2.

Z1 Z2 Z3 u0 u1 u2 u3 uTotal

Scenario 1 23860 50.3 - 0.929 0.929 0.929 – 0.929
Scenario 2 23450 - 39.3 0.977 0.983 – 0.977 0.98

Table 10
Results of implementation the Scenario 3.

Scenario 3 Z1 Z2 Z3 u0 u1 u2 u3 uTotal

Run 1 23700 58.6 44.8 0.546 0.55 0.751 0.565 0.622
Run 2 23918 60.24 43.12 0.691 0.722 0.716 0.691 0.71
Run 3 24606 56.81 42.18 0.761 0.832 0.79 0.761 0.794
Run 4 26048 55.94 42.47 0.737 0.843 0.808 0.74 0.797
Run 5 25920.5 56.69 41.33 0.792 1 0.792 0.825 0.873
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(4) In real-world SSPs, the DM typically face with multiple imprecise in-conflict objectives required to be optimized
simultaneously by the DM in the framework of fuzzy satisfaction levels. Thus, applying the fuzzy set theory for SSPs
offers more effectiveness and flexibility for the interactive two-phase FMOLP method. As a result, the proposed inter-
active two-phase FMOLP method satisfies practical application requirements for solving SSPs by its simultaneous min-
imization of the three objectives: total purchasing and ordering costs the net number of rejected items, and the net
number of late delivered items.



Table 11
Results of implementation the Scenario 4.

Scenario 4 Z1 Z2 Z3 u0 u1 u2 u3 uTotal

Run 1 26129.5 49.47 46.27 0.347 0.633 0.347 0.455 0.478
Run 2 25914.5 52.17 43.57 0.589 0.661 0.589 0.657 0.636
Run 3 24606 56.81 42.18 0.761 0.832 0.79 0.761 0.794
Run 4 24270.5 66.83 40.64 0.875 0.876 0.875 0.877 0.876
Run 5 23450 72.1 39.3 0.977 0.983 1 0.977 0.987

Table 12
Results of implementation the Scenario 5.

Scenario 5 Z1 Z2 Z3 u0 u1 u2 u3 uTotal

Run 1 24248 69.44 37.97 0.477 0.879 0.519 0.477 0.625
Run 2 24757 62.21 40.38 0.596 0.812 0.674 0.596 0.694
Run 3 24606 56.81 42.18 0.761 0.832 0.79 0.761 0.794
Run 4 24680 54.3 44.35 0.822 0.822 0.844 0.899 0.855
Run 5 24460 53.64 47 0.795 0.851 0.858 1 0.903
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Fig. 5. uTotal values of scenarios 3, 4 and 5.
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Fig. 6. Objective and uTotal values of Scenario 3.
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5.4. Performance analysis

To evaluate the credibility and efficiency of the proposed approach, the results of the proposed model are compared with
results of the existing models in the literature. Table 13 compares results of single-objective LP model and Wang and Liang’s
[45] approach with the results of the proposed FMOLP method for the given example. In single-objective LP model, minimiz-
ing the total purchasing and ordering costs (Z1), minimizing the net number of rejected items (Z2), and minimizing the net
number of late delivered items (Z3) lead to optimal values 23320, 47.6, and 39.3, respectively. Alternatively, Wang and
Liang’s [45] approach achieves the following results: Z1 = 25146.5, Z2 = 57.81, Z3 = 41.56 and overall degree of the DM’s sat-
isfaction = 0.761. The proposed FMOLP method results in Z1 = 24606, Z2 = 56.81, Z3 = 42.18, and the overall degree of the
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Table 13
Comparison results for the numerical example.

LP-1 LP-2 LP-2 Wang and Liang’s [45] method Proposed method (FMOLP)

Objective function Min Z1 Min Z2 Min Z3 Max u Max u
u 100 100 100 0.761 0.794
Z1 23320 26150 27900 25146.5 24606
Z2 86.3 47.6 68.1 57.81 56.81
Z3 41.2 50.8 39.3 41.56 42.18
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DM’s satisfaction = 0.794. Table 13 indicates the results of the proposed FMOLP method under an acceptable degree of the
DM’s satisfaction in a fuzzy environment.

To determine the degree of the interactive two-phase FMOLP approach’s closeness to the ideal solution, we have used the
following family of distance functions [46]:
Dpðw; LÞ ¼
XL

l¼1

wp
l ð1� dlÞp

" #1
p

; ð42Þ
where dk represents the degree of closeness of the preferred compromise solution vector to the optimal solution vector with
respect to the kth objective function. w ¼ ðw1;w2; . . . ;wlÞ is the vector of the relative importance of the lth objective function.
The power p represents a distance parameter 1 6 p 61: Assuming

PL
l¼1wl ¼ 1; we can write Dpðw; LÞwith p ¼ 1;2 and1 as

follows:
D1ðw; LÞ ¼ 1�
XL

l¼1

wldl ðThe Manhattan distanceÞ; ð43Þ



Table 14
Comparisons of solutions.

Wang and Liang’s [45] approach Proposed interactive two-phaseFMOLP approach

D1 0.10121 0.09422
D2 0.06619 0.06117
D1 0.05887 0.05404
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D2ðw; LÞ ¼
XL

l¼1

w2
l ð1� dlÞ2

" #1
2

ðThe Euclidean distanceÞ; ð44Þ

D1ðw; LÞ ¼max
l
fwlð1� dlÞg ðThe Tchebycheff distanceÞ; ð45Þ
where in minimization problems, dl takes the form: dl = (the optimal solution of Zl)/(the preferred compromise solution
Zl).

However, we can infer that the approach which can derive a preferred compromise solution is better than the others if:
Min Dpðw; LÞ is achieved by its solution with respect to some p as discussed in Abd El-Wahed and Lee [46]. Comparison of the
degree of closeness of the Wang and Liang’s [45] approach and the proposed interactive two-phase FMOLP model results to
the ideal solution is summarized in Table 14. From Table 13, it is clear that the suggested interactive two-phase FMOLP ap-
proach gave a preferred compromise solution which is better than the solution by the approaches in Wang and Liang’s [45]
for all the distance functionsD1, D2, and D1. This comparison shows the proposed interactive two-phase FMOLP is superior to
Wang and Liang’s approach.

6. Conclusion

In this paper an extended mixed-integer linear programming model for supplier selection and order allocation problems
is introduced along with considering the dependence of price level to the order quantities in multi-product environment. We
developed an interactive two-phase fuzzy multi-objective linear programming method for solving supplier selection and
allocation problem with multiple fuzzy objectives and piecewise linear membership functions. The proposed methodology
attempts to simultaneously minimize the total purchasing and ordering costs, the number of defective units, and the number
of late delivered units ordered from suppliers. A numerical example is used to show the feasibility and effectiveness of apply-
ing the proposed interactive two-phase fuzzy-multi-objective linear programming method to the supplier selection and or-
der allocation problem under fuzzy and uncertain environment. The result of sensitivity analysis for varying objective
functions indicated that the trade-offs and conflicts among dependent objective functions. Furthermore, the results and per-
formance analysis showed that the proposed approach is capable to handle uncertain environments and provide a system-
atic decision tool for logistic managers and practitioners to adopt appropriate strategies and policies in the purchasing
activities. The proposed model could be applied as a suitable decision support system for practitioners to investigate differ-
ent options in the supplier selection and order allocation decision process in real cases. Therefore, the presented model and
approach was still open for incorporating uncertain demands in supplier selection, applying other linear and/or non-linear
membership functions, adopting the various weight calculation methods such as AHP, fuzzy AHP and other multi-criteria
decision making methods for suitable weighting in the second phase of problem, and like that suggested for future research.
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